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Abstract

Martin-Löf’s intuitionistic type theory is a widely-used framework for
constructive mathematics and computer programming. In its most popu-
lar form, type theory consists of a collection of inference rules inductively
defining formal proofs. These rules are justified by Martin-Löf’s meaning
explanations, which extend the Brouwer-Heyting-Kolmogorov interpreta-
tion of connectives to a rich collection of types, and therefore provide a
constructive realizability interpretation of formal proofs.

Around 2005, researchers noticed that the rules of type theory also ad-
mit homotopy-theoretic models, and subsequently extended type theory
with constructs inspired by these models: higher inductive types and Vo-
evodsky’s univalence axiom. Although the resulting homotopy type theory
has proved useful for homotopy-theoretic reasoning, it lacks a construc-
tive interpretation. In this overview, we discuss a cubical generalization
of the meaning explanations of type theory that constitutes an inherently
constructive account of higher-dimensional structure in types.

1 Introduction

Martin-Löf’s intuitionistic type theory is a comprehensive theory of construc-
tions intended as a framework for constructive mathematics and computer pro-
gramming [Martin-Löf, 1975, 1982, 1984]. There are two rather different tradi-
tions of type theory, both due to Martin-Löf, embodying two distinct modes of
use of constructive logic.

Its most widely-used form, which we call formal type theory, is given by
a collection of inference rules defining a collection of types and their inhabi-
tants, and specifying when two such are to be considered definitionally equal
[Martin-Löf, 1975, 1984; The Univalent Foundations Program, 2013]. Formal
type theory serves as an axiomatic logical framework for constructive mathemat-
ics; it is especially well-suited to the mechanization of mathematics, as shown
by theorem provers like Coq [The Coq Project, 2016], Agda [Norell, 2007], and
Lean [de Moura et al., 2015]. Formal type theory embraces axiomatic freedom
by neither admitting nor contradicting non-constructive principles such as the
unrestricted law of the excluded middle [Bishop, 1967]; this freedom allows many
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interesting interpretations, most notably variants of the well-known proofs-as-
programs [Howard, 1980] and realizability [Kleene, 1952] interpretations.

Computational type theory, in contrast, defines types and their inhabitants
as computer programs satisfying an open-ended collection of criteria known as
meaning explanations [Martin-Löf, 1982; Constable, et al., 1985], which extend
the Brouwer-Heyting-Kolmogorov interpretation of the connectives of intuition-
istic logic [Troelstra and van Dalen, 1988; Sundholm, 1983]. Computational type
theory serves as an open-ended account of constructive mathematics compati-
ble with many forms of construction, including general recursion [Constable and
Smith, 1993] and Brouwer’s notion of bar induction [Rahli and Bickford, 2015].
The authors find computational type theory appealing for its direct grounding in
computer science—types are inhabited, quite literally, by programs constructing
the desired objects.

A distinctive feature of certain formal type theories is the identity type a =A

b of proofs that a : A and b : A are equal, defined by the rules [Martin-Löf, 1975;
The Univalent Foundations Program, 2013]:

Γ ` A type
Γ ` a : A

Γ ` refla : a =A a

Γ ` a : A
Γ ` b : A

Γ ` p′ : a =A b
Γ, x :A, y :A, p : x =A y ` C type
Γ, z :A ` c : C[z, z, reflz/x, y, p]

Γ ` ind=A
(x.y.p.C, z.c, a, b, p′) : C[a, b, p′/x, y, p]

The introduction rule establishes that every a : A is identical to itself, and the
elimination rule describes what one can conclude from a proof p that a : A
and b : A are identical. From these rules one can prove identity is reflexive,
symmetric, and transitive.

A natural question is, are two proofs of a =A b necessarily identical? Hof-
mann and Streicher [1998] showed that this property, known as uniqueness of
identity proofs, is not provable in formal type theory, by means of a countermodel
in which types are groupoids (categories in which all morphisms are invertible),
a : A is an object of A, and p : a =A b is a morphism between a and b in A.
Uniqueness of identity proofs fails here because parallel morphisms need not be
equal.

Around 2005, a number of researchers noticed that the groupoid model of
Hofmann and Streicher can be generalized to homotopy-theoretic models in
Quillen model categories [Awodey and Warren, 2009], weak factorization sys-
tems [Gambino and Garner, 2008], weak ω-groupoids [Lumsdaine, 2009; van den
Berg and Garner, 2011], and simplicial sets [Voevodsky, 2006; Streicher, 2006].
These models suggest that formal type theory can serve as an axiomatic frame-
work for homotopy-theoretic constructions, and in particular, reasoning about
topological spaces. In such an interpretation, one thinks of a type as a space,
a : A as a point in A, p : a =A b as a path between a and b in A, and f : A→ B
as a continuous map from A to B. These paths are reflexive, symmetric, and
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transitive, and form a groupoid modulo paths between paths α : p =(a=Ab) q
witnessing the unitality, cancellation, and associativity of these operations.

However, as formal type theory was not developed with higher-dimensional
models in mind, none of its types correspond to interesting spaces. (Nothing
in standard type theory contradicts uniqueness of identity proofs.) This can
be remedied by adding new homotopically-inspired constructs to type theory:
higher inductive types, inductive types generated by not only points but also
paths [Shulman, 2011]; and Voevodsky’s univalence axiom, stating that identity
of types is homotopy equivalence (a higher-dimensional analogue of isomor-
phism) [Voevodsky, 2010; Kapulkin and Lumsdaine, 2016]. Formal type theory
augmented with axioms for higher inductive types and univalence is considered
in Homotopy Type Theory: Univalent Foundations of Mathematics [The Uni-
valent Foundations Program, 2013]; we will henceforth call this theory formal
homotopy type theory (HoTT).

From a mathematical perspective, formal HoTT is a useful axiomatic frame-
work for homotopy theory, and especially the mechanization thereof. Higher
inductive types can represent many spaces and constructions on spaces, from
n-dimensional spheres to homotopy pushouts. Univalence enables analysis of
the path structure of such spaces, and ensures such constructions respect homo-
topy equivalence (because constructions in type theory respect identity). Many
results have already been proved using these tools, ranging from basic category
theory to powerful theorems of algebraic topology [The Univalent Foundations
Program, 2013; Voevodsky et al., 2010].

Philosophically, however, the haphazard introduction of additional axioms to
type theory is troubling. Although the rules of formal type theory are justified
through pre-mathematical explanations of the judgments and logical connectives
[Martin-Löf, 1984], higher inductive types and univalence are justified through
appeals to mathematical models defined with classical logic. In particular, the
proofs-as-programs interpretations of formal type theory do not obviously ex-
tend to formal HoTT.

This defect has real consequences for practitioners of formal HoTT. In 2013,
Brunerie proved that a particular topological invariant is given by the group
Z/nZ where · ` n : N [Brunerie, 2013]. A proofs-as-programs interpretation
for formal HoTT would provide a straightforward method for computing the
numeral to which n is definitionally equal. Instead, n is not definitionally equal
to a numeral, and Brunerie was not able to prove that this invariant is Z/2Z
until 2016, after developing a second, more elaborate proof [Brunerie, 2016].
If the existence of a natural number does not require the ability to exhibit a
numeral, it is not clear in what sense formal HoTT is a constructive theory!

In this overview paper, we discuss an extension of the meaning explanations
of computational type theory that properly accounts for higher-dimensional
structure in types. This extension is based on two key insights: that the judg-
mental apparatus of type theory must itself be generalized to higher dimension
[Licata and Harper, 2012], and that abstract cubes afford a convenient syntactic
representation of higher-dimensional structure [Bezem et al., 2014].

The resulting cubical meaning explanations can be used as the basis of a
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computational higher-dimensional type theory [Angiuli et al., 2017]; they also
serve as cubical realizability models of formal higher-dimensional type theories
[Licata and Harper, 2012; Licata and Brunerie, 2014; Cohen et al., 2016]. Philo-
sophically, they explain the higher-dimensional content of logical connectives,
and hence represent an extension of the Brouwer-Heyting-Kolmogorov interpre-
tation to higher dimension.

2 Meaning explanations

We begin by recalling Martin-Löf’s meaning explanations of computational type
theory [Martin-Löf, 1982; Constable, et al., 1985; Allen, 1987a,b]. Computa-
tional type theory is built on judgments, forms of assertion that are conceptually
prior to the concepts of type or membership. The four basic judgments express
typehood (and equality of types) and membership (and equality of members):

A type

M ∈ A
A
.
=B type

M
.
=N ∈ A

The meaning explanations define these judgments as relations ranging over the
terms of a programming language. This language is open-ended in the sense
that certain programs are postulated to be meaningful, but nothing relies on
the nonexistence of certain programs—there is no extremal clause stating that
those given are all and only the programs in question.1 In fact, one can even
consider classical set-theoretic functions as programs [Howe and Stoller, 1994].

A programming language is specified by defining the syntax of expressions,
including concepts of binding, scope, and substitution for variables, using meth-
ods codified in the theories of arities [Nordström et al., 1990] and abstract
binding trees [Harper, 2016]. Expressions are given computational meaning by
specifying which are canonical (M val), i.e., not subject to further computation;
and by defining an operational semantics (M 7→M ′) that deterministically sim-
plifies closed expressions in a process that may or may not terminate with an
expression in canonical form. Any fully expressive computation system must
admit nontermination, and type theories differ to the extent that nonterminat-
ing expressions participate meaningfully in types and members [Constable and
Smith, 1988].

We first specify the meanings of the basic judgments A type and M ∈ A,
where M and A are both closed programs, in terms of their computational
behavior. The former states that the program A evaluates to a canonical type
A0, meaning that we know what are the canonical members of A0 and when two
such are equal. (Logically, this corresponds to knowing that A is a proposition,
because we know what counts as evidence for A.) The latter states that the
program M evaluates to a canonical member of the canonical type given by

1The NuPRL computational type theory adopts a mild constraint on possible programs
introduced by Howe [1989], in the interest of increasing the utility of the theory. To date, no
proposed extension of the theory has run afoul of this constraint.
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A. (Logically: M computes evidence for the truth of the proposition A.) The
canonical types and their canonical members are defined on a case-by-case basis
according to their outermost form.

Closely related are the judgments A
.
= B type and M

.
= N ∈ A; the former

states that A and B evaluate to equal canonical types (whose canonical members
are the same), and the latter states that M and N evaluate to equal canonical
members of the canonical type given by A. Equality of members depends on the
type at which they are considered, so it must be defined explicitly for each type.
For example, the identity function and the absolute value function are equal
as members of the type of functions on the natural numbers, but are of course
distinct functions over the (positive and negative) integers. In fact, as a matter
of technical convenience, one can define only the binary forms of judgment, and
recover A type and M ∈ A as reflexive instances—to be a type is to be an equal
type to oneself, and similarly for members of a type.

We then define the open judgments:

a1 :A1, . . . , an :An � A
.
=B type

a1 :A1, . . . , an :An �M
.
=N ∈ A

for open expressions M,N,A,B. These are defined by induction on the number
n ≥ 0 of free variables by means of functionality, i.e., type equality and member
equality must respect equality of closed instances in each variable. For instance,
a1 :A1 � A

.
= B type states that for any M

.
= N ∈ A1, we know A[M/a1]

.
=

B[N/a1] type. Open terms are thus regarded extensionally as maps sending
equal members of Ai to equal members of instances of A.

Finally, the meaning of type formers is given uniformly in the meanings of
their constituent types. A canonical member of the product type A × B is a
pair 〈M,N〉 of terms such that M ∈ A and N ∈ B; two canonical members
〈M,N〉 and 〈M ′, N ′〉 are equal when M

.
= M ′ ∈ A and N

.
= N ′ ∈ B. That is,

(equal) evidence for the conjunction of propositions is a pair of (equal) evidence
for each proposition: it is in this sense that the meaning explanations are an
extensional form of the Brouwer-Heyting-Kolmogorov interpretation. Similarly,
equal canonical members of the function type A→ B are maps λa.M and λa.M ′

such that a :A�M
.
=M ′ ∈ B, and reflM is a canonical member of the identity

type M =A N whenever M
.
=N ∈ A. Such definitions proceed in a predicative

fashion, in which successive definitions build on prior ones.

The meaning explanations of type theory define the truth of propositions in
terms of constructions witnessing them—they are not merely a (re)interpretation
of proofs as programs, but rather a guarantee of the inherently constructive na-
ture of mathematics performed in computational type theory. Note, however,
that proving a proposition requires not only exhibiting a construction but also
recognizing that this construction produces the desired object. Such recogni-
tion is no trivial matter: one cannot always mechanically determine whether a
program terminates, much less the form of its answer!

For this reason, especially when mechanizing proofs, it is useful to isolate
a manageable fragment of computational type theory to serve as a window on
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the full truth. Formal type theory is one such fragment, and constitutes an
inductively-defined proof theory for the meaning explanations. We notate its
judgments Γ ` A type and Γ ` M : A, to distinguish them from the meaning
explanations described above. The latter asserts that M is a formal derivation
of the proposition A; in particular, it is decidable whether M indeed proves A,
with no further information. Thus formal type theory is directly suitable for
implementation in a theorem prover.

Thus, although formal type theory is not defined by the meaning explana-
tions, it is in a strong sense motivated by them. For example, because formal
proofs are not inherently programs, establishing a proofs-as-programs interpre-
tation requires metamathematics; on the other hand, this interpretation should,
morally, be inherited from the meaning explanations.

Adding rules of proof construction without accounting for them in the mean-
ing explanations therefore destroys our justification of all rules. In the authors’
opinion, metamathematical concerns about formal HoTT—such as the lack of a
proofs-as-programs interpretation, or the failure of the canonicity property that
every term · ` n : N is definitionally equal to a numeral—are merely symptoms
of this deeper problem, which can only be addressed by developing meaning
explanations that support higher inductive types and univalence by directly
accounting for computation at higher dimension.

3 Abstract cubes

Formal HoTT disrupts the standard meaning explanations by adding non-refl
constants to various identity types: at higher inductive types, for path construc-
tors; and at the universe type, for each equivalence between types. A simple
instance of this phenomenon occurs for the interval higher inductive type I,
defined in part by the rules:

Γ ` zero : I Γ ` one : I Γ ` seg : zero =I one

Pictorially, I is generated by two points and a path connecting them:

zero one
seg

The point constructors zero and one are distinct canonical members of I, and
seg is a canonical path of I from zero to one. There are, however, additional
paths in I beyond seg itself. All members of the identity type are invertible, so
it follows (by the elimination rule of the identity type) that I also has a path
seg−1 : one =I zero. This path, too, has an inverse (seg−1)−1 : zero =I one,
which is not identical to the original seg (although they must be connected by
a path). None of these paths have a simpler description; they are all, like seg,
canonical paths of I.

The seg rule forces the meaning of M =A N to depend nonuniformly on the
choice of A: refl populates the identity types of every type, while seg populates
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the identity types of I only. A uniform accounting of identity-as-paths requires
considering the paths of I to populate I itself, and defining the identity type of
every A as the paths in A. This, in turn, requires extending the membership
judgment to account for path membership in a type. The 2-dimensional formal
type theory of Licata and Harper [2012] was the first type theory to include
judgments capturing not only typehood and membership, but also that p is a
path between a and b in A (and that p, q are equal such paths):

Γ ` A type

Γ ` a : A

Γ ` p : a 'A b

Γ ` A ≡ B type

Γ ` a ≡ b : A

Γ ` p ≡ q : a 'A b

The path judgment has rules stating that paths are composable and invertible:

Γ ` p : a 'A b Γ ` q : b 'A c

Γ ` q ◦ p : a 'A c

Γ ` p : a 'A b

Γ ` p−1 : b 'A a

and the meaning of the identity type a =A b is parasitic on the paths in A:

Γ ` p : a 'A b

Γ ` in p : a =A b

Γ ` q : a =A b

Γ ` out q : a 'A b

Because this type no longer represents identity, we will henceforth call it (and
future extensions) the path type.

Licata and Harper [2012] establish canonicity for their formal type theory,
which includes also an instance of the univalence axiom, namely, a non-trivial
path between bool and itself corresponding to the equivalence swapping its
points. Canonicity follows by an adaptation of the Hofmann and Streicher
[1998] groupoid model, in which A is a groupoid, a : A is an object of A, and
p : a 'A b is a morphism between a and b in A.

The shortcoming of Licata and Harper [2012] is that its judgmental struc-
ture does not account for structure above the second dimension—paths between
paths, paths between those paths, and so forth. Indeed, there are no non-trivial
paths between paths in the theory. To be sure, one could extend this theory
with a judgment that α is a path between paths p and q between a and b in A:

Γ ` α : p 'a'Ab q

and stipulate that paths between paths are composable and invertible, and
that there are paths between paths witnessing the unitality, cancellation, and
associativity of composition and inversion of one-dimensional paths. But what
of the next dimension, in which γ is a path between paths α and β between
paths p and q between a and b in A. . . it is not obvious how to define an infinite
tower of judgments, much less the infinitely many operations they must support!

The solution, as observed by Bezem et al. [2014], is to instead represent this
iterated path structure cubically. That is, we consider not the points, paths,
and paths between paths of a type, but instead the points, paths, and squares:
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a a b
p

a b

p

q

α

a a b
p

a b

c d

p

q

r

sα

n-cubes are parametrized by n dimension variables x, y, z, . . . , which can be
thought of as ranging over an interval. For instance, a 2-cube (square) M varies
over two dimensions, say x and y. Instantiating x to 0 yields a 1-cube (line)
M〈0/x〉 varying only over y. One can further instantiate the y to 1, obtaining
a 0-cube (point) M〈0/x〉〈1/y〉. This process selects first the left edge of M ,
followed by the bottom end point of that line:

y

x
M〈0/x〉〈0/y〉

M〈0/x〉〈1/y〉

M〈1/x〉〈0/y〉

M〈1/x〉〈1/y〉

M〈0/x〉 M〈1/x〉

M〈0/y〉

M〈1/y〉

M

On the other hand, one could select the left end point of the bottom edge by
instantiating y to 1 and then x to 0; the geometric fact that these points coincide
follows from the syntactic fact that instantiations of distinct variables commute.

Cubes afford us a uniform description of n-dimensional members of types as
terms parametrized over n dimension variables, rather than as n-fold iterations
of paths. The order of these dimension variables is immaterial, allowing us to
think of a square either as an x-indexed path between two y-lines, or as a y-
indexed path between two x-lines. By fixing how one is permitted to instantiate
dimension variables, we can specify the allowed geometric operations:

1. 〈0/x〉 and 〈1/x〉, as discussed above, compute the faces of a cube.

2. 〈x/y〉 computes the diagonal of a cube, so that the variation in x traces out
a simultaneous variation in both the x and y directions. In the diagram
above, M〈x/y〉 is the upper-left-to-lower-right diagonal of M .

3. We can also degenerate a cube by regarding it as parametrized by an
additional dimension z which happens not to be used. For example, the
square M is a cube in x, y, z constant in the z dimension.

4. 〈(1− x)/x〉 computes the reversal of a cube, whose faces in the x direction
are now swapped.
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5. 〈(x ∧ y)/x〉 and 〈(x ∨ y)/x〉 compute the connections of a cube, for in-
stance, turning an x-line M into an (x, y)-square whose bottom and right
(resp., top and left) faces are M .

One must also describe the laws governing these operations: for example, taking
a z-face of a cube degenerated in z yields the original cube.

Cubes as a device for representing spaces are a storied mathematical idea due
to Kan [1955]. Bezem et al. [2014] were the first to use cubes in the context of
type theory, building a constructive model of formal type theory in cubical sets
equipped with faces and degeneracies only. Following this idea, there is ongoing
research on a variety of higher-dimensional type theories with cubical judgments,
including a formal type theory with faces, degeneracies, and diagonals (yielding a
structural or cartesian notion of cube) [Licata and Brunerie, 2014], the authors’
work with Todd Wilson on a computational type theory also based on cartesian
cubes [Angiuli et al., 2017], and a formal type theory using cubes equipped with
all the operations described above [Cohen et al., 2016].

4 Cubical meaning explanations

We proceed by describing the cubical meaning explanations of computational
cubical type theory as developed by Angiuli et al. [2017], which directly general-
ize Martin-Löf’s meaning explanations of ordinary computational type theory.
Although some technical details of this presentation are specific to the authors’
type theory, we expect similar principles will justify other cubical type theories,
including the formal cubical type theories of Licata and Brunerie [2014] and
Cohen et al. [2016]. (Indeed, the proof of canonicity for the latter type theory
shares some features with our meaning explanations [Huber, 2016].)

The four basic judgments of computational cubical type theory are:

A pretype [x1, . . . , xn]

M ∈ A [x1, . . . , xn]

A
.
=B pretype [x1, . . . , xn]

M
.
=N ∈ A [x1, . . . , xn]

where x1, . . . , xn are lists of dimension variables. These judgments range over an
open-ended notion of cubical program, which includes ordinary programs as well
as programs containing dimension variables. Cubical programs are given compu-
tational meaning by an operational semantics which deterministically simplifies
expressions that are closed on term variables (but may contain dimension vari-
ables). When this process terminates, it yields an expression in canonical form
that, again, may contain dimension variables. The operational semantics, and
therefore also the judgments, respect renaming of dimension variables.

A program whose free dimension variables are contained in x1, . . . , xn rep-
resents an n-cube. Face, diagonal, and degeneracy operations correspond to
dimension substitutions: 〈0/xi〉 or 〈1/xi〉 compute the left (resp., right) face in
dimension xi, 〈xj/xi〉 computes the diagonal identifying xi and xj , and weak-
ening by xi degenerates a cube in the xi direction.
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Consider, for example, the interval higher inductive type I described in Sec-
tion 3. Its point constructors are terms zero and one as before; its path con-
structor, in direction x, is the term segx. The terms zero, one, and segx are
canonical, but seg0 evaluates to zero, ensuring that the left face operation on
segx, segx〈0/x〉, indeed computes zero (and similarly for seg1 and one).

The basic judgment A pretype [Ψ] implies A evaluates to a canonical Ψ-
dimensional pretype A0, meaning that we know what are the canonical Ψ-
dimensional members of A0 and when two such are equal. The basic judgment
M ∈ A [Ψ] implies that M evaluates to a canonical Ψ-dimensional member
of the canonical pretype A0. The members of a pretype are different at every
dimension: zero is a point in I but segx is not; on the other hand, both segx and
zero (viewed degenerately) are lines in I.

The above description, however, does not suffice as a definition, as it does
not ensure the judgments are preserved by cubical operations. For example, if
M is a line in A then its left face should be a point in A〈0/x〉—if M ∈ A [x]
then M〈0/x〉 ∈ A〈0/x〉 [·]. This property is not automatic, because evaluation
is also not closed under cubical operations: for instance, segx is canonical but
seg0 is not. Thus A〈0/x〉 may not be a pretype at all!

We solve this by demanding that any sequence of cubical operations applied
to a pretype (resp., member) evaluate to a canonical pretype (resp., canonical
member), and moreover, that the process of performing cubical operations then
evaluating be functorial—for example, computing a face, evaluating, and com-
puting a face of the result must agree with computing the iterated face at once.
(A richer collection of cubical operations would therefore place more stringent
requirements on the members of types.)

To be precise, let ψ : Ψ′ → Ψ denote any composite cubical operation
taking Ψ-cubes to Ψ′-cubes. The judgment A pretype [Ψ] states that for all
ψ : Ψ′ → Ψ, A under ψ (written Aψ) evaluates to some A0, and we know what
are the canonical Ψ′-dimensional members of A0 and when two such are equal.
Furthermore, if ψ can be expressed as a composition of two cubical operations
ψ1 and ψ2, then Aψ1 evaluates to some A1 which under ψ2 evaluates to some A2,
and A2 has the same canonical Ψ′-dimensional members as A0. The judgment
M ∈ A [Ψ] states that for all ψ : Ψ′ → Ψ, Mψ and M under ψ1 then ψ2 (as
before) evaluate to equal canonical Ψ′-dimensional members of A0.

The equality judgments A
.
= B pretype [Ψ] and M

.
=N ∈ A [Ψ] are defined

similarly, stating that A,B (resp., M,N) have coherent cubical operations as
described above, and moreover, A0 and B0 have the same canonical members
(resp., M0 and N0 are equal canonical members of A0).2 The open judgments

a1 :A1, . . . , an :An � A
.
=B pretype [Ψ]

a1 :A1, . . . , an :An �M
.
=N ∈ A [Ψ]

are defined by functionality, as before, with the caveat that functionality must
hold at all dimension. That is, for any ψ : Ψ′ → Ψ and any equal Ψ′-dimensional

2The canonical members defining a pretype must in fact be members in this sense (i.e.,
must have coherent cubical operations), a condition Angiuli et al. [2017] call cubicality.
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members of A1ψ, . . . , Anψ, the corresponding substitution instances of Aψ,Bψ
(resp., Mψ,Nψ) must be equal Ψ′-dimensional pretypes (resp., members). No-
tice that we consider open terms by instantiating each ai with members of Ai,
but do not consider Ψ-dimensional cubes by instantiating each xi with 0 or 1.
Doing so equates all lines whose end points agree—in other words, it ensures
uniqueness of identity proofs! It is critical that Ψ-cubes be treated as programs
unto themselves, and first-class citizens of cubical type theory.

Most types retain their usual definition, parametrized over the dimension
Ψ. For example, a canonical Ψ-dimensional member of the product pretype
A×B pretype [Ψ] is a pair 〈M,N〉 of terms such that M ∈ A [Ψ] and N ∈ B [Ψ],
and two canonical members 〈M,N〉 and 〈M ′, N ′〉 are equal when M

.
= M ′ ∈

A [Ψ] and N
.
= N ′ ∈ B [Ψ]. Similarly, two maps λa.M and λa.M ′ are equal

canonical Ψ-dimensional members of the function pretype A→ B pretype [Ψ]
when a :A�M

.
=M ′ ∈ B [Ψ].

When A pretype [Ψ, x], the path pretype Pathx.A(M,N) pretype [Ψ] has as
canonical Ψ-dimensional members abstracted lines 〈x〉P such that P ∈ A [Ψ, x]
and moreover P 〈0/x〉 .= M ∈ A〈0/x〉 [Ψ] and P 〈1/x〉 .= N ∈ A〈1/x〉 [Ψ]. Ab-
stracting a dimension variable decreases the dimension of terms by one, so that
an x-line P in A corresponds to a point 〈x〉P in the path type of A. This defi-
nition is not particularly complicated, nor should it be—in a sense the purpose
of cubical judgments is only to provide a judgmental notion of path on which
to base the meaning of the path type.

The cubical apparatus greatly simplifies the treatment of iterated path struc-
ture in higher-dimensional type theory, but we have not yet accounted for its
groupoid structure—composition and inversion of paths, associativity and can-
cellation laws, and so forth. All of this structure can be imposed by means
of a single family of operators establishing the uniform Kan condition [Bezem
et al., 2014]. Loosely, the Kan condition (as originally defined by Kan [1955])
states that connected partial n-cubes extend to complete n-cubes: whenever
three edges of a square exist, the fourth and interior do as well, and similarly
for five faces of a cube:

(a)

·

·

·

·

(b)

·

·

·

·

·

·

·

·

Such partial n-cubes are, evocatively, called open boxes. The remaining side is
called the composite of the open box, and the interior is the filler.
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The uniform Kan condition invented by Bezem et al. [2014] adapts the Kan
condition to type theory by means of two critical modifications. The first is to
demand not only the classical existence of composites, but an operation com-
puting the composite of any open box. The second is to demand that this
composition operation commutes with cubical operations. For instance, if we
degenerate the open box (a), we obtain a partial box consisting of the top, left,
and right faces of a cube; the composite of this degenerated box (its bottom
face) must be the degeneracy of the composite of (a).

Miraculously, the groupoid structure of paths can be recovered from the Kan
condition. Below we illustrate how to define path composition and inversion as
composites of open boxes; recall that a point a can be regarded degenerately as
a line from a to a. More complicated composites yield squares witnessing the
unitality, cancellation, and associativity of the path operations defined this way.

a b

a c

a q

p

q ◦ p

a a

b a

p a

a

p−1

The Kan composition operations are rendered as programs in the cubical
programming language, taking as arguments the faces of the open box and
the type in which they lie. These operations compute according to their type
argument; for instance, at type A × B one pairs the composite of the first
projection of each face at type A, and the second projections at type B.

Types, then, are pretypes at which the Kan operations compute composites
of open boxes. That is, the judgment A type [Ψ] states that A pretype [Ψ],
and for every open box of members of A, the Kan operation at A applied to
that box is a member of A that is the composite of that box. The judgment
A
.
=B type [Ψ] states that A

.
=B pretype [Ψ], and the Kan operations at A and

B compute equal composites of open boxes in A. The fact that Kan composites
are members of types ensures their uniformity (that they commute with cubical
operations), because membership in a type is preserved by cubical operations,
and cubical operations commute with term formers. Finally, the open typehood
judgments are once again defined by functionality: all instances of an open type
must be closed types, in a manner respecting equality.

Just as one might consider a variety of cubical operations, so one might
consider a variety of open box shapes. It is critical that the Kan condition
only apply to connected partial cubes, as opposed to, say, allowing one to fill a
square given only its left and right edges. But must open boxes be symmetric?
Must the composite be the 〈1/y〉 face of the filler, and if so, must we provide
the filler’s 〈0/y〉 face? Cohen et al. [2016] allow computing the 〈1/y〉 face of a
filler, given its 〈0/y〉 face and any number of faces with extent in the y direction.
Angiuli et al. [2017] allow computing any y-face or y-diagonal of a filler, given
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any other y-face or y-diagonal and one or more pairs of opposing faces in other
dimensions. Below are instances of exotic open boxes permitted by the former
(c) and latter (d) type theories:

y

x

(c)

· ·

· ·

(d)

· ·

· ·

The groupoid structure of higher inductive types is defined by freely adding
Kan composites as canonical members. In the interval higher inductive type
I, zero and one are canonical Ψ-dimensional members for all Ψ (as they can
be degenerated), segx is a canonical (Ψ, x)-dimensional member for all Ψ, and
every irreducible Kan composite of members of I is also a canonical member at
the appropriate dimension. These four clauses inductively define the canonical
members of I, and ensure by construction that I has Kan composites.

A characteristic feature of Martin-Löf’s intuitionistic type theory is the uni-
verse type U , whose members are themselves types. Kan operations pose a
significant complication for universes in cubical type theory—in order to ensure
U is a type, irreducible Kan composites of members of U must be canonical
members of U , and therefore (being members of U) must themselves be types.
For example, if the types Ai ∈ U [Ψ] form an open box in U , their composite C
must be a canonical Ψ-dimensional member of U . Because U is a universe, the
Ψ-dimensional members of U must be Ψ-dimensional types. One must therefore
define what are the Ψ-dimensional canonical members of C, and what are Kan
composites of open boxes in C, and moreover, the members and composites of
C must equal members and composites of Ai at any faces or diagonals where C
equals Ai.

The univalence axiom of formal HoTT stipulates paths between types A and
B for each homotopy equivalence E between A and B. Because a path between
types in cubical type theory is itself a type, univalence gives rise to a type line
uay(E) whose 〈0/y〉 face is A and whose 〈1/y〉 face is B. In formal HoTT, paths
between types are equipped with an operation to transport members of one
end point to members of the other; transport across an equivalence E applies
that equivalence. In cubical type theory, transport is a special case of Kan
composition in which the type varies in the direction of composition.3 In the
theory of Cohen et al. [2016], the uay(E) type is definable; Angiuli et al. [2017]
define the type noty, the instance of univalence corresponding to the equivalence
between bool and itself swapping its points (as in Licata and Harper [2012]).

We close by outlining how the cubical meaning explanations subsume both

3Angiuli et al. [2017] in fact decompose Kan composition into two operations: composition
in constant types and transport.
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the meaning explanations of computational type theory and the judgments of
2-dimensional formal type theory. If one restricts attention to cubical pro-
grams that are also ordinary programs—that is, programs with no dimension
variables—then the cubical meaning explanations directly collapse to Martin-
Löf’s meaning explanations. This holds because the Kan operations do not
affect this fragment, and the cubical coherence conditions described above are
trivial for 0-cubes. Thus computational type theory can be seen simply as the
lowest dimension of computational cubical type theory.

Similarly, the lowest two dimensions of computational cubical type theory
correspond to the point and path judgments of 2-dimensional type theory. The
judgment a : A holds when a ∈ A [·], and p : a 'A b holds when p ∈ A [x],
p〈0/x〉 .= a ∈ A [·], and p〈1/x〉 .= b ∈ A [·]. The composition and inverse path
operations can be implemented by Kan operations as outlined previously. The
only wrinkle is that path operations behave strictly (up to definitional equality)
in 2-dimensional type theory, and in cubical type theory one has squares witness-
ing the groupoid laws. Thus one must say two paths are equal, p ≡ q : a 'A b,
when there is a square identifying p and q.

5 Related and future work

Higher-dimensional type theory continues to be an active research area in mul-
tiple disciplines. Although cubical type theories resolve some shortcomings of
formal HoTT, there are still reasons to study formal HoTT itself: to date, essen-
tially all mechanized reasoning in higher-dimensional type theory uses theorem
provers based on formal HoTT, and most research on categorical models of
higher-dimensional type theories considers formal HoTT.

Although formal HoTT does not enjoy the canonicity property that every
term · ` n : N is definitionally equal to a numeral, Voevodsky [2011] has con-
jectured that one can always construct a path from n to a numeral. A posi-
tive resolution to this conjecture would recover some of the benefits of cubical
type theory; for instance, it would resolve Brunerie’s difficulty computing Z/2Z
[Brunerie, 2016]. The cubical apparatus does not resolve this problem—one
cannot model identity types as cubical path types, as the latter do not validate
the so-called computation rule in formal HoTT for the identity eliminator on
reflexive paths. However, it is possible to define a separate cubical identity type
that does validate the computation rule [Cohen et al., 2016].

The concept of equality has long been a source of difficulty in formal type
theory; prior to formal HoTT, without resorting to setoids [Barthe et al., 2003],
one could neither quotient types by equivalence relations nor identify functions
that agree in extension. These difficulties are resolved incidentally by higher
inductive types and univalence, respectively, so these features potentially benefit
all proofs in formal type theory. But one can also directly address these issues,
by analyzing definable quotient types [Li, 2014], or developing a formal type
theory admitting the principle of function extensionality [Altenkirch et al., 2007].

One can also add further axioms to formal HoTT, in order to capture addi-
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tional structure of interest to homotopy theorists. Cohesive homotopy type the-
ory allows types to have both path structure, as in formal HoTT, and topological
structure, as in classical algebraic topology [Schreiber and Shulman, 2012]. Ho-
motopy Type System extends formal HoTT with non-fibrant types that do not
respect homotopy, including an exact equality type, and a fibrant replacement
operation sending non-fibrant types to fibrant types [Voevodsky, 2013]. In the
future, it may be possible to extend our higher-dimensional meaning explana-
tions to accommodate these additional structures.

Cubical type theory, too, contains many open problems. At present, the
authors’ computational cubical type theory lacks a universe type and full uni-
valence [Angiuli et al., 2017]. Cohen et al. [2016] have these features and have
established a canonicity result [Huber, 2016], but other metatheoretic prop-
erties, such as decidability of type checking, are unknown. Very few higher
inductive types have been defined in cubical type theory thus far, and gen-
eral schemata for higher inductive types are not known, even in the context of
formal HoTT. Cubical proof assistants remain in their infancy: computational
cubical type theory is being implemented in the RedPRL proof assistant [Ster-
ling et al., 2016], and Cohen et al. [2016] have implemented an experimental
type checker.4 Finally, the open-ended nature of meaning explanations permits
all manner of constructions, including Brouwer’s free choice sequences [Troel-
stra, 1973; Dummett, 1977] given by a purported creating subject rather than
a computer program; the authors hope to pursue higher-dimensional analogues
of such concepts in computational cubical type theory.
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Theory. Oxford University Press, 1990.

U. Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Chalmers University of Technology, 2007.

V. Rahli and M. Bickford. Coq as a Metatheory for Nuprl with Bar Induc-
tion. Presented at Continuity, Computability, Constructivity – From Logic
to Algorithms (CCC 2015), 2015.

U. Schreiber and M. Shulman. Quantum gauge field theory in cohesive homotopy
type theory. In Proceedings of the 9th Workshop on Quantum Physics and
Logic, October 2012. URL https://arxiv.org/abs/1408.0054v1.

M. Shulman. Homotopy type theory, VI, 2011. URL https://golem.ph.

utexas.edu/category/2011/04/homotopy_type_theory_vi.html. Blog
post on the n-category café.
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