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RedPRL is an experimental proof assistant based on Cartesian cubical computational type theory,
a new type theory for higher-dimensional constructions inspired by homotopy type theory. In the
style of Nuprl, RedPRL users employ tactics to establish behavioral properties of cubical functional
programs embodying the constructive content of proofs. Notably, RedPRL implements a two-level
type theory, allowing an extensional, proof-irrelevant notion of exact equality to coexist with a higher-
dimensional proof-relevant notion of paths.

1 Introduction

Homotopy type theory [27] and Univalent Foundations [29] extend traditional type theory with a number
of axioms inspired by homotopy-theoretic models [19], namely Voevodsky’s univalence axiom [28] and
higher inductive types [21]. In recent years, these systems have been deployed as algebraic frameworks
for formalizing results in synthetic homotopy theory [8,12,17], sometimes even leading to the discovery
of novel generalizations of classical theorems [1].

The constructive character of type theory, embodied in the existence of canonical forms, is disrupted
by axiomatic extensions that are not accounted for in the traditional computational semantics. Far from
being merely a philosophical concern, the negation of type theory’s native algorithmic content impacts
the practice of formalization. Brunerie proved that the 4th homotopy group of the 3-sphere is isomorphic
to Z/nZ for some closed n, but establishing n = 2 required years of additional investigation [11]. In
ordinary type theory, such a closed n expresses an algorithm that calculates a numeral; in the absence
of computational semantics for homotopy type theory, there is no reason to expect Brunerie’s proof to
specify such an algorithm.

Multiple researchers have recently established the constructivity of univalence and higher inductive
types by extending the syntax and semantics of type theory with cubical machinery. One solution is
embodied in the (De Morgan) cubical type theory of Cohen et al. [14], implemented in the cubicaltt
type checker [15]. RedPRL is an interactive proof assistant based on another approach, Cartesian cubical
computational type theory [3, 4, 13].

In Section 2 we discuss the methodology of computational type theory, as pioneered in the Nuprl
system [16], and in Section 3 we describe its proof-theoretic realization in RedPRL. In Section 4 we
briefly discuss the cubical machinery present in Cartesian cubical computational type theory, and its
RedPRL implementation. Finally, in Section 5 we discuss related and future work.
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2 RedPRL

Expressions M,N,O :≡ x | (x : M)→ N | λx.M |M N

| (x : M)×N | 〈M,N〉 | fst(M) | snd(M)

| bool | true | false | if(M;N;O)

(x : M)→ N val λx.M val

M 7→M′

M N 7→M′N (λx.M)N 7→M[N/x] (x : M)×N val

〈M,N〉 val
M 7→M′

fst(M) 7→ fst(M′) fst(〈M,N〉) 7→M

M 7→M′

snd(M) 7→ snd(M′)

snd(〈M,N〉) 7→ N bool val true val false val

M 7→M′

if(M;N;O) 7→ if(M′;N;O)

if(true;N;O) 7→ N if(false;N;O) 7→ O

Figure 1: A programming language with dependent functions, dependent pairs, and booleans.

2 Computational Type Theory

RedPRL and Nuprl are based on a computation-first methodology in which the judgments of type the-
ory range over programs from a programming language whose syntax and dynamics have already been
defined. This is in contrast with other approaches in which proof terms are inductively defined and
equipped after the fact with a reduction semantics or realizability model. One advantage of our method-
ology is the ability to incorporate features found in computer science more easily, such as exceptions and
non-termination, because the theories arise directly from programming languages.

Consider the programming language whose grammar and small-step dynamics are specified in Fig-
ure 1; the dynamics consists of a stepping relation M 7→ M′ and a value predicate M val. In compu-
tational type theory, types are interpreted not as structured sets, but as behaviors specifying classes of
programs. To define such a type theory over this language, we must specify which programs name types
(e.g., bool), and which programs each type classifies (e.g., those that evaluate to true or false). More
precisely, we must consider what types are and when they are equal—in which case they must classify
the same programs—and for each type, what it means for its elements to evince equal behaviors [22].

Programs A and B are equal types, written A .
= B type, when A ⇓ A0 (i.e., A 7→∗ A0 and A0 val),

B ⇓ B0, and A0 and B0 are equal canonical types. A canonical type A0, in turn, is a value associated to
a (symmetric and transitive) relation on values, specifying the canonical elements of A0 and when two
such elements are equal. Finally, M and N are equal elements of A .

= A type, written M .
= N ∈ A, when

M ⇓M0, N ⇓ N0, and M0 and N0 are classified as equal elements by A0 (where A ⇓ A0). For notational
convenience, we write A type when A .

= A type, and M ∈ A when M .
= M ∈ A.

Concretely, the booleans are defined by the following clauses:

bool
.
= bool type true

.
= true ∈ bool false

.
= false ∈ bool

That is, bool is a canonical type with canonical (unequal) elements true and false. The canonicity
property follows directly from the above definitions.
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Theorem 1 (Canonicity). For any M ∈ bool, M ⇓ true or M ⇓ false.

The judgments for programs with free variables are defined in terms of all closing substitutions.
In the case with one variable, we say x : A� B .

= C type when for all M and N, if M .
= N ∈ A then

B[M/x] .=C[N/x] type. That is, the type families B and C are equal when they send equal elements of A
to equal types. Similarly, we say x : A�M .

= N ∈ B when for all O and P, if O .
= P ∈ A then M[O/x] .=

N[P/x]∈B[O/x]. Dependent function and dependent pair types are then defined by the following clauses:

(x : A)→ B .
= (x : C)→ D type ⇐⇒ A .

=C type and x : A� B .
= D type

λx.M .
= λx.N ∈ (x : A)→ B ⇐⇒ x : A�M .

= N ∈ B

(x : A)×B .
= (x : C)×D type ⇐⇒ A .

=C type and x : A� B .
= D type

〈M,N〉 .= 〈O,P〉 ∈ (x : A)×B ⇐⇒ M .
= O ∈ A and N[M/x] .= P[O/x] ∈ B[M/x]

In general, new type constructors are implemented by extending the syntax and dynamics of the
programming language, and adding clauses to the definitions of canonical types and elements. For the
full programming language currently in RedPRL and the technical details of the defining clauses, see
Angiuli et al. [4] and Cavallo and Harper [13].

Open judgments in computational type theory are distinct from those in many type theories: vari-
ables range over closed programs, instead of being indeterminate objects (sometimes called “generic
values”). One consequence is that computational type theory often validates relatively strong extension-
ality principles, including the full universal property of the bool type (for all terms M .

= M ∈ bool and
x : bool� N .

= N ∈C):

N[M/x] .= if(M;N[true/x];N[false/x]) ∈C[M/x]

(This equation is called the Shannon expansion, a widely used tool for deciding boolean formulae.)
The above cannot be established as a judgmental equality in most type theories, and while it is known

how to implement extensional booleans in a proof-theoretic setting (at least in the simply-typed case), the
same techniques cannot be applied to inductive types with recursive generators (such as natural numbers),
nor even to the empty coproduct if regarded as a positive type.1 In computational type theory, however,
all of these unicity principles, as well as function extensionality, follow immediately from the definitions
of the open judgments and equality for each type.

3 Proof Refinement Logic

It is crucial, after defining a computational type theory from a programming language, to devise a proof
theory that is sound and facilitates formalization and computer checking. Proof theories prioritize us-
ability and are often incomplete; as such, we have been experimenting with multiple different designs in
parallel with RedPRL to find out what works the best for our intended applications; RedPRL is our first
such experiment, but there are many other possibilities within the design space [15].

For example, some proof theories achieve a decision procedure for type checking by including more
data in the terms, at the expense of making certain kinds of equational reasoning more baroque; this
approach has some undeniable advantages in comparison to RedPRL’s more extrinsic style, and we are

1The universal property of the positive version of the empty type entails a collapse of definitional equivalence in an incon-
sistent context; in a traditional proof-theoretic account of type theory, this disrupts strong normalization.
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currently studying it as a means to alleviate a number of practical difficulties in the RedPRL system. We
do not at this time recognize any particular proof theory as the “canonical” one.

The proof theory in RedPRL is a proof (program) refinement logic in the tradition of Nuprl [16];
as such, it is oriented around the decomposition of proof goals into subgoals, and the extraction of
computational evidence for main goals from the evidence for the subgoals, a refinement of the LCF
methodology first synthesized by [7]. At a technical level, the RedPRL proof logic is an extraction-
oriented sequent calculus with judgments like the following, which asserts that the type A is inhabited
under the assumptions H, with realizer or witness M:

H =⇒ A true M

In the above, H and A are inputs to the judgment, whereas M is an output to the judgment: this means
that it does not appear in the statement of the goal, but is instead synthesized by the proof refinement
system in the course of the proof. A proof refinement logic for this judgment is a signature of refinement
rules, which explain how to decompose one such sequent into a collection of other sequents whose
witnesses can be combined into a witness for the main sequent.

In RedPRL, these refinement rules are written downward as in the following example:

H =⇒ (x : A)×B(x) true 〈M,N〉
by sigma/intro∣∣∣∣∣∣

H =⇒ A true M
H =⇒ B(M) true N
H,x : A =⇒ B(x) type

Above, the binding structure of the rule is indicated with arrows; in general, outputs flow downward
through the subgoals and upward to the output of the main goal. As can be seen, our schema for refine-
ment rules generalizes the one used in Nuprl, in that it permits the statements of subgoals to depend on
the realizers of earlier subgoals [25]; this facility also appears in the latest version of Coq’s refinement
engine [24], and is also present in the Matita proof assistant [6].

The complete collection of RedPRL’s refinement rules can be viewed online [26].

Auxiliary subgoals In addition to the two familiar subgoals to the introduction rule for dependent pairs,
there is a third subgoal required to establish that B(x) is actually a genuine family of types indexed in A.
In proof assistants like Agda and Coq, these kinds of obligations are checked automatically; however,
RedPRL is based on realizers rather than checkable proof terms, so we must explicitly emit such a
subgoal in order to preserve soundness. In nearly all cases, such auxiliary subgoals can be discharged
automatically using the auto tactic.

3.1 Rule Composition and Proof Tactics

A proof in RedPRL is built from tactics [18]; every refinement rule is a tactic, but the tactics include
composite forms like the following:
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Expression Meaning

t1;t2 “run t1 on the current goal, and then run t2 on the resulting subgoals”
t; [t0, . . . ,tn] “run t on the current goal, and then run ti on the ith resulting subgoal”
t1 | t2 “try running t1 on the current goal, but if that fails, run t2 instead”
auto “use automation to decompose the current goal as much as possible”
. . .

In order to ease the process of constructing proofs and programs in RedPRL, the tactic language is
also equipped with special notation for certain frequent combinations of rules and tactics. For instance,
the following tactic introduces two variables and pairs them, solving the goal (x : A)→ (y : B(x))→ (x :
A)×B(x):

lam x y ⇒{
use x,
use y

} elaborate
=====⇒

pi/intro;

with x⇒
pi/intro;

with y⇒
sigma/intro; use x,

use y,
auto


,

auto


,

auto


While the tactic notation above is built-in for convenience, users can also define their own tactics and

tacticals, though RedPRL does not yet provide any facilities for extending the concrete notation.

4 Cubical Type Theory

The theory underlying RedPRL differs from earlier computational type theories (notably Nuprl) by ex-
tending the syntax of the programming language with dimension expressions encoding higher-dimensional
path structure. A dimension expression r is either a dimension name i (representing a generic element of
an abstract interval), or a constant 0 or 1 representing one of the two endpoints.

In Cartesian cubical computational type theory, there is always an ambient context Ψ of dimension
names, signifying the dimensions accessible to the program. Dimension names behave like variables
because one can substitute a dimension expression for a name, where a 0- or 1-substitution takes the 0-
or 1-face, respectively, and substituting one name for another takes the corresponding diagonal.

For example, let M be a program indexed by dimension i, M〈0/i〉 is its 0-face, M〈1/i〉 is its 1-face,
and M〈 j/i〉 is the diagonal identifying dimensions i and j. A program indexed by n dimension names
(i.e., by an n-fold Cartesian product of abstract intervals) forms an abstract n-dimensional cube. Using
dimension names, it is possible to express higher-dimensional structure at the judgmental level. For
example, the judgment M .

= N ∈ A [i] means that M and N are equal lines, or paths, varying in the
dimension i. In general, the judgements A .

= B type [Ψ] and M .
= N ∈ A [Ψ] refer to |Ψ|-dimensional

structure varying in the dimensions Ψ. (See Angiuli et al. [3] for a more detailed introduction to cubical
type theory.)



6 RedPRL

Dimension expressions r :≡ 0 | 1 | i
Expressions M,N,O,P :≡ ·· · | S1 | base | loopr | S1-rec(x.M;N;O; i.P)

S1 val base val loopi val loop0 7→ base loop1 7→ base

M 7→M′

S1-rec(x.C;M;B; i.L) 7→ S1-rec(x.C;M′;B; i.L) S1-rec(x.C;base;B; i.L) 7→ B

S1-rec(x.C;loop j;B; i.L) 7→ L〈 j/i〉

Figure 2: A fragment of the circle type, omitting the Kan structure.

4.1 Stable Computation

Dimension substitutions significantly complicate the story of computational type theory, because they do
not in general commute with computation.

To see the problem, let’s introduce a higher inductive type representing a circle, described in part in
Figure 2; the new constructs include:

• S1: the circle type.

• base: a point constructor in S1, representing a distinguished point in the circle.

• loopr: a path constructor parametrized by the dimension expressions r, representing the loop in
the circle. The program that loopi represents is a line along dimension i from base to base, which
is witnessed by the computation rules loop0 7→ base and loop1 7→ base.

• S1-rec(x.C;M;B; i.L): the eliminator of S1 by case analysis, where x.C is the motive, M is the
target, and B and i.L are the two methods matching the constructors base and loopi.

With the circle type S1, we can see how dimensions might complicate the story of computation.
Consider the program S1-rec( .bool;loopi;true; .false). It should evaluate to false according to
the rules in Figure 2. However, if we substitute 0 for i before evaluating, the resulting program instead
evaluates to true:

S1-rec( .bool;loop0;true; .false) 7→ S1-rec( .bool;base;true; .false)

7→ true.

This is a serious issue if we hope to close our type theory under a computational notion of equiva-
lence. We therefore must restrict our type theory to only recognize programs for which computation and
dimension substitution commute (up to judgmental equality); this essential restriction ensures that the
program above shall not inhabit the bool type. We also identify a class of stable computation rules that
always commute with dimension substitution, and therefore can be used to simplify programs without
first establishing that they are well-typed.

Angiuli et al. [4] identify many computation rules as stable: all rules present in traditional type theory,
as they are defined uniformly across all dimension contexts; moreover, rules such as loop0 7→ base will
never be affected by substitutions. RedPRL is equipped with an algorithm to identify more subtle
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instances of stable computation, by taking into account which dimensions are bound and thus unaffected
by substitutions. However, our experience shows that this algorithm does not help as much in practice as
one might hope: many difficult cases that arise in concrete formalization efforts are not precisely stable,
rather only up to typed judgmental equality.

On the other hand, programs that are already known to be well-typed admit a much broader collection
of computation rules. We believe that by focusing our efforts in the future on developing an ergonomic
theory of typed programs, we can employ a richer version of definitional equivalence including equations
not justified by stable computation alone.

4.2 Kan Operations and Kinds

In order to perform the homotopy-theoretic constructions available in homotopy type theory, we must
equip types with Kan operations that describe how to compose and invert lines, and how to trans-
port elements along lines of types [3, 4]. Types A equipped with such operations are called Kan, and
written A typekan [Ψ]. They are also called fibrant types because the fibrancy in many models of in-
terest corresponds to implementing Kan operations. All RedPRL type formers present in homotopy
type theory—including dependent functions, dependent pairs, paths, higher inductive types, and type
universes—preserve being Kan.

However, RedPRL also contains types not present in homotopy type theory, notably, exact equal-
ity types internalizing judgmental equality. These cannot in general be equipped with Kan operations,
because equality is finer than homotopy and therefore not invariant under paths. Such pretypes A are
written A typepre [Ψ].

Pretypes and Kan types are part of a continuum of Kan structures recognized by RedPRL, such
as the types with only partial Kan structure, or those with stronger properties (such as having no non-
trivial paths). We are able to further refine our type theory with a language of (currently, five) kinds κ

governing the type equality judgment A .
= B typeκ [Ψ], resulting in a theory more expressive than other

two-level type theories such as [5]. Equality types of a type with no non-trivial paths can be made Kan,
for example.

5 Related and Future Work

RedPRL is under active development. We are currently implementing support for general higher in-
ductive types [13], which will greatly expand the range of homotopy-theoretic proofs expressible in
RedPRL. One consequence would be the ability to fully model homotopy type theory and various two-
level type theories2; see [13]. We are also actively experimenting with alternate implementations of
complex Kan operations (in particular, for the V and Fcom types in Angiuli et al. [4]).

The use of the cubical structure in constructive models of homotopy type theory was pioneered by
Bezem et al. [9], and has since been studied extensively by ourselves and others [2–4, 13, 14, 20]. There
are many subtle technical choices possible in this arena—such as the tradeoffs between expressivity of
the dimension language and Kan operations—but these are outside the scope of this survey article.

With Anders Mörtberg, we are also implementing the yacctt type checker for a variant of Cartesian
cubical type theory whose formal properties mirror those of cubicaltt, rather than the proof refinement
logic of RedPRL. In connection with this project, we are studying the question of normal forms and
algorithmic definitional equivalence for Cartesian cubical type theory. Despite these efforts, the natural

2Except the resizing rules in the homotopy type system proposed by Voevodsky [30].
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number n in Z/nZ mentioned in the introduction remains to be computed successfully: attempts in
cubicaltt have consumed excessive memory and failed to terminate, while RedPRL and yacctt do not
yet contain sufficient homotopy-theoretic results.
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