Homotopical Patch Theory

Carlo Angiuli Edward Morehouse Daniel R. Licata Robert Harper

Carnegie Mellon University
September 3, 2014

This talk is about doing (Darcs-like) patch theory inside of homotopy type theory using functorial semantics.

Functorial Semantics

Functorial Semantics

Define equational theories as functors out of some category.

A group is a product-preserving functor $\mathbb{G} \rightarrow$ Set.

This idea is due to Bill Lawvere-that equational theories (like group theory) are categories, and their models (like groups) are functors out of those categories. \mathbb{G} defines what it means to be a group; a functor out of it is a group.

Functorial Semantics

The theory of groups, \mathbb{G}, is generated by:

$$
\begin{gathered}
C \in \mathrm{Ob}(\mathbb{G}) \\
\text { comp }: C \times C \rightarrow C \\
e: 1 \rightarrow C \\
-1: C \rightarrow C
\end{gathered}
$$

such that $(\mathrm{id} \times e) ; c o m p=i d, \ldots$
\mathbb{G} is a finite-product category generated by an object C, which represents the carrier of the group; and morphisms generated by the identity element of C, a binary composition operator, and a unary inverse operator; satisfying laws.

Functorial Semantics

A product-preserving functor $\llbracket-\rrbracket: \mathbb{G} \rightarrow$ Set is a set $\llbracket C \rrbracket$
a binary operation $\llbracket c o m p \rrbracket$ on $\llbracket C \rrbracket$ an element $\llbracket e \rrbracket \in \llbracket C \rrbracket$ a unary operation $\llbracket^{-1} \rrbracket$ on $\llbracket C \rrbracket$
such that \llbracket comp $\rrbracket(g, \llbracket e \rrbracket)=g$ for all $g \in \llbracket C \rrbracket, \ldots$

Functorial Semantics

A product-preserving functor $\llbracket-\rrbracket: \mathbb{G} \rightarrow$ Set is

 this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run it.

Functorial Semantics

A product-preserving functor $\llbracket-\rrbracket: \mathbb{G} \rightarrow$ Set is

a binary operation $\llbracket c o m p \rrbracket$ on $\llbracket C \rrbracket$ an element $\llbracket e \rrbracket \in \llbracket C \rrbracket$ a unary operation $\llbracket^{-1} \rrbracket$ on $\llbracket C \rrbracket$

(morphism part of $\llbracket-\rrbracket$)
(that 【-】 respects
equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group operations; and those operations must satisfy the group laws because the morphisms in \mathbb{G} did. For the purposes of this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run it.

Functorial Semantics

A product-preserving functor $\llbracket-\rrbracket: \mathbb{G} \rightarrow$ Set is

a binary operation $\llbracket c o m p \rrbracket$ on $\llbracket C \rrbracket$ an element $\llbracket e \rrbracket \in \llbracket C \rrbracket$
a unary operation $\left[\left[^{-1}\right]\right.$ on $[C]$
such that $\llbracket c o m p \rrbracket(g, \llbracket e \rrbracket)=g$ for all $g \in \llbracket C \rrbracket, \ldots$

(that $\llbracket-\rrbracket$ respects equality of morphisms)

If we unpack this definition, the object part of the functor gives us a carrier set; the morphism part gives us the group operations; and those operations must satisfy the group laws because the morphisms in \mathbb{G} did. For the purposes of this talk, we say the image is a concrete implementation in the sense that it is just sets and functions, so we can run it.

Functorial Semantics

A product-preserving functor $\llbracket-\rrbracket: \mathbb{G} \rightarrow$ Set is a set $\llbracket C \rrbracket$
a binary operation $\llbracket c o m p \rrbracket$ on $\llbracket C \rrbracket$ an element $\llbracket e \rrbracket \in \llbracket C \rrbracket$ a unary operation $\llbracket^{-1} \rrbracket$ on $\llbracket C \rrbracket$
such that \llbracket comp $\rrbracket(g, \llbracket e \rrbracket)=g$ for all $g \in \llbracket C \rrbracket, \ldots$

Homotopy Type Theory

Homotopy Type Theory

HoTT is a constructive, proof-relevant theory of equality inside dependent type theory.

Equality proofs $\mathrm{p}: \mathrm{a} \mathrm{E}_{\mathrm{x}} \mathrm{b}$ are identifications of a with b .

Homotopy Type Theory

These identifications are reflexive, symmetric, and transitive, because equality is.

Homotopy Type Theory

We can have identifications of identifications.

$\mathrm{p}, \mathrm{q}: \mathrm{a}=\mathrm{x}$ b
$\mathrm{a}, \mathrm{b}: \mathrm{X}$

Because the identifications are proof-relevant-they come with evidence-those identifications can themselves be identified. This leads to an infinite-dimensional tower of equalities. In "ordinary" types, these identifications represent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are uninteresting, we call the type a set.

Homotopy Type Theory

We can have identifications of identifications.

$$
\begin{aligned}
& \alpha, \beta: \mathrm{p}=(\mathrm{a}=\mathrm{x} \mathrm{~b}) \mathrm{q} \\
& \mathrm{p}, \mathrm{q}: \mathrm{a}=\mathrm{x} b \\
& \mathrm{a}, \mathrm{~b}: \mathrm{X}
\end{aligned}
$$

Because the identifications are proof-relevant-they come with evidence-those identifications can themselves be identified. This leads to an infinite-dimensional tower of equalities. In "ordinary" types, these identifications represent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are uninteresting, we call the type a set.

Homotopy Type Theory

We can have identifications of identifications.

$\left.\begin{array}{l}p, a=x b \\ a, b: x\end{array}\right\} x$ is a set

Because the identifications are proof-relevant-they come with evidence-those identifications can themselves be identified. This leads to an infinite-dimensional tower of equalities. In "ordinary" types, these identifications represent exact equality, and are always reflexivity if they exist. In that case, where the equality types themselves are uninteresting, we call the type a set.

Homotopy Type Theory

Functions preserve this structure.

As expected, functions send equal elements to equal results. In fact, functions preserve all this structure, at all levels.

Homotopy Type Theory

Functions preserve this structure.

As expected, functions send equal elements to equal results. In fact, functions preserve all this structure, at all levels.

Homotopy Type Theory

Higher Inductive Types introduce non-sets: arbitrary spaces.
space Circle : Type where
base : Circle
loop : base $=_{\text {Circle }}$ base

This is the first way we'll introduce interesting identifications into type theory; the other will come up in a bit. Note that loop just generates identifications; we also get loop ○ loop, !loop, etc.

Patch Theory

Repositories and Changes

```
Vec n String
ADD s@l
RM l
```

```
such that
```

such that
RM l o ADD s@l = id...

```
RM l o ADD s@l = id...
```

 (a repository)
 (and changes to it)
(satisfying patch laws)

We want to study repositories and patches. For example, this is a concrete implementation of a (one-file) repository and changes one might apply to it.

Repositories and Changes

We want to study the general phenomenon of repositories and changes (similar to how group theory was invented to generalize symmetry groups). What sorts of things should be true of all patch theories? There are identity patches at every repository, and patches are invertible and composable.

Repositories and Changes

Some laws hold in all patch theories. (compose id $\mathrm{p}=\mathrm{p}$)
Patches aren't always applicable. (RM 5 in a 3-line file)

Patch Theory

num

add1
id, compose, inv...

such that

compose id $\mathrm{p}=\mathrm{p} .$.

(an abstract repository)

(with abstract patches)

(satisfying patch laws)

Here's an abstract theory of a repository. The idea is that the repository contains a single number, and the only patches add to (or subtract from, thanks to inverses) that number.

Patch Theory

Abstract patches as a HIT:

```
space Patch : Type where
    add1 : Patch
    id : Patch
    compose : Patch }->\mathrm{ Patch }->\mathrm{ Patch
    inv : Patch }->\mathrm{ Patch
    unitl : compose id p =Patch p
```

We can model these patches as a HIT. The patches are add1, identity, and compositions and inverses of these; and we identify certain compositions by the groupoid laws (for example, identity is a left unit for composition).

Patch Theory

Interpret these patches functorially:

```
interp : Patch -> (Int -> Int)
interp add1 = \lambdan.n+1
interp id = \lambdan.n
interp (compose p2 p1) = \lambdan.interp p2 (interp p1 n)
ap interp unitl : interp (compose id p) = Int }->\mathrm{ Int interp p
```

If we interpret num as the type Int, then we interpret patches as concretely effecting changes on Ints, in a functorial way.

Patches as Identifications

In HoTT, equality is groupoidal and respected functorially!

Key idea: a patch taking a to b is an identification of a and b .

[^0]
Patches as Identifications

space R : Type where
num : R
add1 : num $=_{R}$ num

Thus, we say the type of patches is num = num, which gives us the groupoid operations and laws, and functoriality, for free! In this case, the patch theory R looks just like the circle. (Recall that the add1 constructor generates additional identifications.)

Interpreting Patch Theory

$$
\text { I }: R \rightarrow \text { Set }
$$

I num
: Set
ap I add1
: I num $=_{\text {Set }}$ I num

$$
\mathrm{R} \longrightarrow \mathrm{I} \longrightarrow \text { Set }
$$

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int and itself. How might we get one of those?

Interpreting Patch Theory

$$
\begin{aligned}
& \text { I : R } \rightarrow \text { Set } \\
& \text { I num }=\text { Int } \\
& \text { : Set } \\
& \text { ap I add1 } \\
& \text { : I num }=_{\text {Set }} \text { I num }
\end{aligned}
$$

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int and itself. How might we get one of those?

Interpreting Patch Theory

$$
\begin{aligned}
& \text { I : R } \rightarrow \text { Set } \\
& \text { I num }=\text { Int } \\
& : \text { Set } \\
& \text { ap I add1 } \\
& \text { : Int }=_{\text {Set }} \text { Int }
\end{aligned}
$$

To use that built-in functoriality, if we interpret patches as identifications, then add1 is an identification between Int and itself. How might we get one of those?

Univalence Axiom

Bijections between sets X and Y yield identifications $\mathrm{X}==_{\text {Set }} \mathrm{Y}$.

$$
\text { ua : Bijection } X \text { Y } \rightarrow X=_{\text {Set }} Y
$$

Univalence Axiom

Bijections between sets X and Y yield identifications $X==_{\text {Set }} Y$.

$$
\text { ua }: \text { Bijection } X Y \rightarrow X==_{\text {Set }} Y
$$

In particular,

$$
\text { ua }(\lambda \mathrm{n} . \mathrm{n}+1): \text { Int }=_{\text {Set }} \text { Int }
$$

The second way we add new identifications into type theory is by the univalence axiom. Remember, equality is proofrelevant. We're not saying isomorphic types are the same; we're saying that we identify them via their isomorphism.

Interpreting Patch Theory

I num = Int
ap I add1 = ua $(\lambda \mathrm{n} . \mathrm{n}+1)$
ap (ap I) unitl :
ap I (refl $\circ \mathrm{p})=_{\text {Int=set } \operatorname{Int}}$ ap I p

(I on elements)

(I resp. equality)
(I resp. equality of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I's respect for equality determines the way we interpret patches; and I's respect for equalities of equalities ensures that the interpretation of patches satisfies the patch laws (here, just the groupoid laws).

Interpreting Patch Theory

I num = Int
ap I add1 = ua ($\lambda \mathrm{n} . \mathrm{n}+1$)
ap (ap I) unitl :
ap I (refl \circ p) $=_{\text {Int }=\text { set } I_{n t}}$ ap I p
(I resp. equality)
(I resp. equality of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I's respect for equality determines the way we interpret patches; and I's respect for equalities of equalities ensures that the interpretation of patches satisfies the patch laws (here, just the groupoid laws).

Interpreting Patch Theory

I num = Int
ap I add1 $=\mathrm{ua}(\lambda \mathrm{n} . \mathrm{n}+1)$
ap (ap I) unitl :
ap I (refl $\circ \mathrm{p})=_{\text {Int=set } \mathrm{Int}}$ ap I p
(I on elements)
(I resp. equality)
(I resp. equality of equalities)

Then the objects/elements part of I determines the way we interpret the abstract repository; I's respect for equality determines the way we interpret patches; and I's respect for equalities of equalities ensures that the interpretation of patches satisfies the patch laws (here, just the groupoid laws).

Now It Gets Tricky. . .

A Different Repository

Nat

generated by $\lambda \mathrm{n} . \mathrm{n}+1$

such that. . .

(a repository)
(and changes to it)
(satisfying patch laws)

Let's change the previous example a bit-how do we abstractly model the situation where what if the repository is a natural number, with a patch to increment it?

A Different Patch Theory

num
add1
id, compose, inv...
such that...
(an abstract repository)
(with abstract patches)
(satisfying patch laws)

The obvious solution is to do the same thing as before, but the problem is that this will give us inverse patches like !add1...

A Different Patch Theory

But inverses don't exist in general:

[^1]
A Different Patch Theory

Index the contexts to characterize patch applicability:

space I* : Type where
doc : Nat \rightarrow I*
add1 : (n : Nat) $\rightarrow \operatorname{doc} \mathrm{n}=_{\mathrm{I} *}$ doc $\mathrm{n}+1$

We can't help but have inverses, so the solution is to make sure that the inverses only exist in situations where they are actually possible. Indexing the contexts makes this possible by essentially giving "types" to the patches.

A Different Patch Theory

Index the contexts to characterize patch applicability:

space I* : Type where
doc : Nat \rightarrow I*
add1 : (n : Nat) $\rightarrow \operatorname{doc} \mathrm{n}=_{\mathrm{I} *}$ doc $\mathrm{n}+1$

We can't help but have inverses, so the solution is to make sure that the inverses only exist in situations where they are actually possible. Indexing the contexts makes this possible by essentially giving "types" to the patches.

Interpretation

How do we interpret this? Obvious idea:

But λ n. $\mathrm{n}+1$ isn't a Bijection Nat Nat.

Interpretation

Fix: interpret doc n as the singleton type of n.

where $\mathrm{S}(\mathrm{n})=\Sigma \mathrm{m}:$ Nat. $\mathrm{m}=\mathrm{n}$
$\mathrm{S}(\mathrm{n})$ is essentially the type of numbers equal to n . (Technically, it is any number, with a proof it is equal to n .) $\lambda \mathrm{n} . \mathrm{n}+1$ is a bijection when restricted to a singleton, as is any map.

What Else?

What Else?

- More on interpreting non-invertible patches.
- Fancier patch theories, with fancier patch laws.
- Defining patch optimizers.
- Defining merging.

Expanded version of paper with more exposition:
http://tinyurl.com/icfp-htpt

We recommend that you read the expanded version of the paper, available on the authors' websites (and at this link), which has an addendum with some additional exposition.

Computation vs. Homotopy

There's a tension between:

equating terms by identifications

$$
\operatorname{doc} 0==_{\mathrm{I} *} \operatorname{doc} 1
$$

distinguishing them
by computations

The last point l'd like to bring up is that these additional identifications seem counter to the idea of computation, in the sense that we still wish to tell apart the different repositories.

Computation vs. Homotopy

Analogy: function extensionality already equates bubble sort and quicksort.

They are the same function but different programs.
Computation is finer-grained than equality.

When we have function extensionality, we equate, for example, bubble sort and quicksort as functions, but they compute very differently on the same list. As logicians we want to equate the functions, but as computer scientists we want to distinguish the programs. Indeed, there's already a trend (OTT, internalizing parametricity, etc.) of extending the syntax of type theory with additional semantic equations.

Thanks!

Interpreting Patch Theory

There are other ways to interpret R .

I num = Bool
ap I add1 = ua not

Interpreting Patch Theory

The Bool interpretation satisfies additional laws.
(ap I (add1 \circ add1) $=\lambda n . n$)
Int is the complete interpretation, because
The fundamental group of the circle is Int.

In a sense, this means that the Int interpretation doesn't validate any extra laws: it's the free model of the theory.

[^0]: But the existence of identities, compositions, and inverses, and preservation thereof by functions, is already guaranteed in HoTT for identifications! We can take advantage of this by modeling patches as identifications.

[^1]: ... and this doesn't actually work on all Nats! (By the way, this is one reason we would like HoTT without inverses, which we call directed type theory.)

