
Lecture Notes 2
Inductive Definitions

Carlo Angiuli

B522: PL Foundations
January 15, 2025

Our first order of business will be to define the set of (valid) expressions of a
language, introducing us to the notion of an inductive definition by a collection of
inference rules. This lecture will introduce inference rules, what they mean, how
to reason about them, and a few applications. The material may seem technical at
first, but we will see many more examples of these concepts in the coming lectures.

Abstract syntax and inductive definitions are covered in Chapters 1 and 2 of
Harper [Har16], but with a different presentation.

1 BNF grammars

The most concise way to define a set of expressions, and one you may have seen
before, is to write a formal grammar in Backus–Naur form (BNF). In C311/B521
you might have written down the syntax of a simple “programming language” of
booleans as follows:

Expressions 𝑒 ::= true | false | (not 𝑒) | (if 𝑒 𝑒 𝑒)

In this class we are not using Racket, so we will instead write:

Expressions 𝑒 ::= true | false | not(𝑒) | if(𝑒, 𝑒, 𝑒)

Remark 2.1. In practice, one often wants a friendlier notation for if-expressions,
such as if 𝑒 then 𝑒 else 𝑒 . For nowwe are talking about a mathematical or abstract
conception of the syntax of a programming language, divorced from questions
such as how to type it into a computer. Soon enough we will allow ourselves to
write friendlier concrete syntax for our own sake, with the understanding that it is
(in this class) a shorthand for abstract syntax.

1

Here 𝑒 ranges over the set of all possible expressions, which are true, false,
not(𝑒) where 𝑒 is an expression, and if(𝑒, 𝑒, 𝑒) where each of these 𝑒s is a (possibly
different) expression. (Sometimes people write if(𝑒, 𝑒′, 𝑒′′) to make it clearer that
these 𝑒s are not required to be the same.)
Remark 2.2. More precisely, we are defining a single grammatical category of
expressions, corresponding to the nonterminal 𝑒 on the left; there are two terminal
symbols, namely true and false, and the vertical bars indicate alternatives.
Exercise 2.3. Are the following valid expressions?

• true — yes

• not(true) — yes

• 0 — no

• if(true, false) — no

• not — no(!)

• if(true, false, 0) — no

Note that the clauses of the grammar not only indicate what is a valid term
but also what isn’t: everything else.

Definition 2.4. 𝑒 is a valid expression if and only if:

• 𝑒 = true or

• 𝑒 = false or

• 𝑒 = not(𝑒′) where 𝑒′ is a valid expression or

• 𝑒 = if(𝑒1, 𝑒2, 𝑒3) where 𝑒1, 𝑒2, 𝑒3 are valid expressions.

The “only if” here will be crucial to our ability to reason about the properties
of valid expressions.
Remark 2.5. TheHtDP-heads among youmay imagine something like the following
data definition:

; An Exp is one of:
; - true
; - false
; - (make-not Exp)
; - (make-if Exp Exp Exp)

2

2 Inference rules

To formally explain why if(not(true), false, true) is a valid expression, we
might argue as follows:

• if(not(true), false, true) is an expression because

• not(true) is an expression because
• true is an expression

• false is an expression
• true is an expression

The outermost step of the argument is an instance of the general fact that
if(𝑒1, 𝑒2, 𝑒3) is an expression if 𝑒1 is an expression, 𝑒2 is an expression, and 𝑒3 is an
expression; in this case 𝑒 is not(true) and so seeing that it is an expression relies
in turn on the general fact that not(𝑒) is an expression if 𝑒 is an expression, and
that true is an expression.

Let us introduce some terminology and notation to simplify this argument.
We will write

𝑒 exp

for the assertion that 𝑒 is an expression. We call exp a judgment, in the sense
that this assertion “judges” that 𝑒 is indeed an expression. (We can also call it an
assertion or a predicate.)

There are four ways to judge 𝑒 to be an expression. One is that not(𝑒) is an
expression if 𝑒 is an expression. We write this as an inference rule with one premise
(𝑒 exp) and one conclusion (not(𝑒) exp).

𝑒 exp

not(𝑒) exp

Two of the remaining three inference rules have no premises, while the final one
has three premises.

true exp false exp

𝑒1 exp 𝑒2 exp 𝑒3 exp

if(𝑒1, 𝑒2, 𝑒3) exp

Remark 2.6. An inference rule with zero premises is called an axiom.

3

One benefit of inference rule notation is that we can chain these rules together:

true exp

not(true) exp false exp true exp

if(not(true), false, true) exp

Remark 2.7. Chaining together inference rules as above forms a derivation tree
whose root (at the bottom) can be concluded from its leaves/premises (at the top).
If every leaf is an axiom then there are no remaining premises, the conclusion
holds unconditionally, and we say that the derivation is closed.
Schematic picture of a derivation with wedges indicating subderivations.

Exercise 2.8. Write a (closed) derivation of not(not(true)) exp.
Remark 2.9. Note that we can instantiate 𝑒′, 𝑒1, 𝑒2, 𝑒3 in the rules for not and if
with any valid expression. In that way, those rules really stand for an infinite
family of rules of the form “if [blank] is an expression then not([blank]) is an
expression,” whereas the rules for true and false really are just singular rules.

Once again, crucially, we take the four inference rules above as specifying not
only when something can be judged to be an expression but also when something
cannot.

Definition 2.10. The judgment 𝑒 exp holds if and only there is a closed derivation
tree with conclusion 𝑒 exp, built only out of the rules:

true exp false exp

𝑒 exp

not(𝑒) exp
𝑒1 exp 𝑒2 exp 𝑒3 exp

if(𝑒1, 𝑒2, 𝑒3) exp

This is essentially just a rephrasing of Definition 2.4.
Remark 2.11. We can read inference rules from top to bottom: “if 𝑒 exp then
not(𝑒) exp.” But we can also read them from bottom to top: “to show that
not(𝑒) exp, we can show that 𝑒 exp.” But importantly, inference rules are more
than just random implications: they are always the defining clauses of a judgment.

2.1 Aside: abstract syntax trees

If we turn the derivation of if(not(true), false, true) exp upside-down, we can
see it as an abstract syntax tree, where each node corresponds to the rule being
invoked (equivalently, the topmost constructor of the expression), and its child
trees correspond to the list of immediate subexpressions.

4

if

not

true

false true

Definition 2.12. 𝑒 is a valid abstract syntax tree if and only if:

• 𝑒 = true or

• 𝑒 = false or

• 𝑒 =

not

𝑒′

where 𝑒′ is a valid abstract syntax tree or

• 𝑒 =

if

𝑒1 𝑒2 𝑒3

where 𝑒1, 𝑒2, 𝑒3 are valid abstract syntax trees.

Again, this is essentially just a rephrasing of Definitions 2.4 and 2.10.
Remark 2.13. These trees show up in actual implementations of programming lan-
guages, sometimes called abstract syntax trees or parse trees, as the data structures
generated by parsers.

2.2 More inductive structures

Inference rules are a powerful tool that will allow us to define a great many
“inductive” structures, structures that are defined by a collection of (potentially
self-referential) clauses and no others.
Example 2.14. We define the natural numbers N as follows:

Natural numbers 𝑛 ::= zero | suc(𝑛)
where the “successor” of 𝑛 represents 𝑛 + 1. Equivalently, the judgment 𝑛 nat is
defined by the collection of inference rules:

zero nat

𝑛 nat

suc(𝑛) nat

5

Example 2.15. We could add natural numbers to our programming language:

Expressions 𝑒 ::= true | false | not(𝑒) | if(𝑒, 𝑒, 𝑒)
| zero | suc(𝑒) | zero?(𝑒)

Equivalently,

true exp false exp

𝑒 exp

not(𝑒) exp
𝑒1 exp 𝑒2 exp 𝑒3 exp

if(𝑒1, 𝑒2, 𝑒3) exp

zero exp

𝑒 exp

suc(𝑒) exp
𝑒 exp

zero?(𝑒) exp

We can also definemultiple grammatical categories / judgments simultaneously
with reference to one another.
Example 2.16. We define lists of natural numbers as follows:

Natural numbers 𝑛 ::= zero | suc(𝑛)
Lists of naturals ℓ ::= empty | cons(𝑛, ℓ)

Equivalently,

zero nat

𝑛 nat

suc(𝑛) nat empty natlist

𝑛 nat ℓ natlist

cons(𝑛, ℓ) natlist

Example 2.17. We define even and odd natural numbers as follows:

Evens 𝑒 ::= zero | suc(𝑜)
Odds 𝑜 ::= suc(𝑒)

Equivalently,

zero even

𝑜 odd

suc(𝑜) even
𝑒 even

suc(𝑜) odd

Remark 2.18. BNF grammars will not be able to fully capture most of the languages
we consider throughout the semester, because they have an infinite number of
grammatical categories (types) and/or binding (variables); for these features we
will need to use inference rules. However, BNF grammars will remain a convenient
way to summarize some systems of inference rules.

So far all of our judgments have been unary: assertions about a single expres-
sion (often, that it is well-formed). We can also define binary judgments that make
a joint assertion about two things.

6

Example 2.19. The binary judgment

𝑛 doubledIs 𝑛′

is defined by the following inference rules:

zero doubledIs zero

𝑛 doubledIs 𝑛′

suc(𝑛) doubledIs suc(suc(𝑛′))

Exercise 2.20. There is exactly one concrete 𝑛 for which we can derive

suc(zero) doubledIs 𝑛

What is that 𝑛? Write the derivation of the above judgment.

2.3 Reasoning about inductive structures

Lemma 2.21. If 𝑛 even then suc(suc(𝑛)) even.

Proof. Suppose we have a derivation of 𝑛 even. Then we can add two more rules to
the bottom of that derivation to form a derivation of suc(suc(𝑛)) even as required:

...

𝑛 even

suc(𝑛) odd
suc(suc(𝑛)) even □

So far we have used the “if” direction of a number of inductive definitions (as
in Definitions 2.4, 2.10 and 2.12) to show that certain judgments hold, and we have
used the “only if” direction to show that certain judgments do not hold (e.g., 0
is not an expression). We can also use the “only if” direction to prove positive
properties of judgments.

Lemma 2.22 (Inversion for suc). If suc(𝑚) nat then𝑚 nat.

Proof. The judgment 𝑛 nat holds only if there is a derivation of 𝑛 nat built out of
repeated applications of the two rules

zero nat

𝑛 nat

suc(𝑛) nat

In particular, any derivation of suc(𝑚) nat must end with an application of one of
these two rules. It cannot end with an application of the first rule, because then it
would be a derivation of zero nat. So it must end with the second rule applied to
a complete derivation of its premise𝑚 nat. From this we conclude𝑚 nat. □

7

Remark 2.23. The above argument is an instance of a common reasoning pattern
called rule induction, which we will make more precise shortly.
Remark 2.24. Whereas the second rule says that𝑚 nat is a sufficient condition
for concluding that suc(𝑚) nat, Lemma 2.22 states that it is in fact a necessary
condition: that rule is the only way to conclude that suc(𝑚) nat. In other words,
we can “run the rule backwards,” which is why it’s called an inversion lemma.

3 Least sets

Before giving any more examples of rule induction, I want to pause and derive it
mathematically from the “if and only if” characterization of inductive structures.

Let us write Exp for the set of valid expressions: the set of 𝑒 for which 𝑒 exp
holds. Recall that by Definition 2.10, 𝑒 ∈ Exp if and only if we have a derivation
tree with conclusion 𝑒 exp built only out of the following rules:

true exp false exp

𝑒 exp

not(𝑒) exp
𝑒1 exp 𝑒2 exp 𝑒3 exp

if(𝑒1, 𝑒2, 𝑒3) exp

Let us refer to these four rules as 𝐸.

Definition 2.25. A set 𝑋 is 𝐸-closed if the following four properties hold:

• true ∈ 𝑋 ,

• false ∈ 𝑋 ,

• not(𝑥) ∈ 𝑋 whenever 𝑥 ∈ 𝑋 , and

• if(𝑥1, 𝑥2, 𝑥3) whenever 𝑥1, 𝑥2, 𝑥3 ∈ 𝑋 .

Theorem 2.26. The set of expressions Exp is the least 𝐸-closed set; that is, (1) Exp
is 𝐸-closed, and (2) for any 𝐸-closed set 𝑋 , we have Exp ⊆ 𝑋 .

Proof.

1. First we prove that Exp is 𝐸-closed. There are derivations of true exp and
false exp, so by definition we have true, false ∈ Exp. Using the not
rule, whenever we have a derivation of 𝑒 exp we can build a derivation of
not(𝑒) exp. Finally, using the if rule, whenever we have derivations of
𝑒1 exp and 𝑒2 exp and 𝑒3 exp we can build a derivation of if(𝑒1, 𝑒2, 𝑒3).

8

2. Suppose that 𝑋 is 𝐸-closed and that we have a derivation of 𝑒 exp; we
translate that derivation into a proof that 𝑒 ∈ 𝑋 . Our derivation of 𝑒 exp
must end with one of the four rules of 𝐸. If it ends in true exp, then we
must prove true ∈ 𝑋 , which is true by 𝐸-closure. (Similarly for false exp.)
Alternatively, it could end with the following rule:

...

𝑒 exp

not(𝑒) exp

In that case, we have at hand a derivation tree of 𝑒 exp which is shorter than
the tree we started with, and we can recursively translate that derivation into
a proof that 𝑒 ∈ 𝑋 . Once that process is completed, we can apply 𝐸-closure
to conclude that not(𝑒) ∈ 𝑋 as well. (The case for if is similar.) □

Example 2.27. For a concrete example of the above proof, suppose that𝑋 is 𝐸-closed
and show that if(not(true), false, true) ∈ 𝑋 by converting each inference rule
in the derivation below to an application of 𝐸-closure:

true exp

not(true) exp false exp true exp

if(not(true), false, true) exp

Remark 2.28. The 𝐸-closure of Exp corresponds to the “if” direction of our def-
inition: if we can build a derivation out of the rules of 𝐸, then we have a valid
expression. The leastness corresponds to the “only if” direction: Exp contains only
things built out of the rules of 𝐸. If Exp contained additional expression(s) not built
out of the rules, those expressions would not be in every 𝐸-closed set.

Let’s look at a more familiar example next.

Definition 2.29. A set 𝑋 is 𝑁 -closed if 0 ∈ 𝑋 and 𝑛 ∈ 𝑋 =⇒ 𝑛 + 1 ∈ 𝑋 .

Theorem 2.30. The natural numbers N are the least 𝑁 -closed set.

Examples of other 𝑁 -closed sets include Z, R, N ∪ {−1}, . . . all of which satisfy
the necessary closure conditions but include superfluous elements.

The characterization of N as the least 𝑁 -closed set implies the principle of
mathematical induction.

9

Theorem 2.31 (Mathematical induction). To prove that 𝑃 (𝑛) holds for all 𝑛 ∈ N, it
suffices to show that 𝑃 (0) and ∀𝑛 ∈ N.𝑃 (𝑛) =⇒ 𝑃 (𝑛 + 1).

Proof. Define Σ𝑃 = {𝑛 ∈ N | 𝑃 (𝑛)}. Clearly Σ𝑃 ⊆ N by construction. The
hypotheses imply that Σ𝑃 is 𝑁 -closed, so by Theorem 2.30 we haveN ⊆ Σ𝑃 . Hence
N = Σ𝑃 and thus 𝑃 (𝑛) for all 𝑛. □

Similarly, our characterization of Exp as the least𝐸-closed set implies a principle
of rule induction: to prove a property 𝑃 for all expressions, we must show that the
subset of expressions satisfying 𝑃 is 𝐸-closed. That is, the property 𝑃 is preserved
by every inference rule.

Theorem 2.32 (Rule induction for Exp). To prove that a property 𝑃 (𝑒) holds for all
𝑒 ∈ Exp, it suffices to show that:

• 𝑃 (true),

• 𝑃 (false),

• for every 𝑒 , if 𝑃 (𝑒) then 𝑃 (not(𝑒)), and

• for every 𝑒1, 𝑒2, 𝑒3, if 𝑃 (𝑒1), 𝑃 (𝑒2), and 𝑃 (𝑒3), then 𝑃 (if(𝑒1, 𝑒2, 𝑒3)).

Proof. Define Σ𝑃 = {𝑒 ∈ Exp | 𝑃 (𝑛)}. Clearly Σ𝑃 ⊆ Exp by construction. The
hypotheses imply that Σ𝑃 is 𝐸-closed, so by Theorem 2.26 we have Exp ⊆ Σ𝑃 .
Hence Exp = Σ𝑃 and thus 𝑃 (𝑒) for all 𝑒 ∈ Exp. □

4 Rule induction

Theorem 2.33 (Rule induction for nat). To prove that a property 𝑃 (𝑛) holds for all
𝑛 nat, it suffices to show that:

• 𝑃 (zero) and

• for every 𝑛, if 𝑃 (𝑛) then 𝑃 (suc(𝑛)).

Lemma 2.34. If 𝑛 nat then there exists some 𝑛′ such that 𝑛 doubledIs 𝑛′.

Proof. We prove 𝑃 (𝑛) = “there exists some 𝑛′ such that 𝑛 doubledIs 𝑛′” by rule
induction. We must show that 𝑃 is closed under the rules for the nat judgment, of
which there are two.

10

• The first rule is:

zero nat

Wemust show that 𝑃 holds in this case, i.e. that 𝑃 (zero) holds, i.e. that there
exists some 𝑛′ such that zero doubledIs 𝑛′. We choose 𝑛′ = zero, because:

zero doubledIs zero

• The second rule is:
𝑛 nat

suc(𝑛) nat

We must show that if the premise satisfies 𝑃 (this is called our inductive
hypothesis), then the conclusion satisfies 𝑃 . That is, we must show that for
all 𝑛, if 𝑃 (𝑛) holds then 𝑃 (suc(𝑛)) holds. Unfolding the definition of 𝑃 , our
inductive hypothesis 𝑃 (𝑛) is that there exists 𝑛′ such that 𝑛 doubledIs 𝑛′.
We must show that 𝑃 (suc(𝑛)) holds, which is to say that there exists 𝑛′′
such that suc(𝑛) doubledIs 𝑛′′. We choose 𝑛′′ = suc(suc(𝑛′)) because:

𝑛 doubledIs 𝑛′

suc(𝑛) doubledIs suc(suc(𝑛′)) □

Inversion Lemma 2.22 also follows from rule induction, for the property 𝑃 (𝑛) =
“𝑛 nat, and if 𝑛 is of the form suc(𝑛′) for some 𝑛′, then 𝑛′ nat.”

Theorem 2.35 (Rule induction for doubledIs). To prove that a property 𝑃 (𝑛, 𝑛′)
holds for all 𝑛 doubledIs 𝑛′, it suffices to show that:

• 𝑃 (zero, zero) and

• for all 𝑛, 𝑛′, if 𝑃 (𝑛, 𝑛′) then 𝑃 (suc(𝑛), suc(suc(𝑛′))).

Lemma 2.36. If 𝑛 doubledIs 𝑛′ then 𝑛′ even.

Proof. We prove 𝑃 (𝑛, 𝑛′) = “𝑛′ even” by rule induction. There are two cases:

• Case 1:

zero doubledIs zero

We must prove that the conclusion satisfies 𝑃 , i.e. 𝑃 (zero, zero), or that
zero even. This is an axiom.

11

• Case 2:
𝑛 doubledIs 𝑛′

suc(𝑛) doubledIs suc(suc(𝑛′))
We must prove that 𝑃 is closed under this rule: in other words, if 𝑃 (𝑛, 𝑛′)
holds then 𝑃 (suc(𝑛), suc(suc(𝑛′))) holds. Our inductive hypothesis 𝑃 (𝑛, 𝑛′)
is that 𝑛′ even, and we must prove that suc(suc(𝑛′)) even. We already
proved this in Lemma 2.21. □

Lemma 2.37. If 𝑛 doubledIs 𝑛′ and 𝑛 doubledIs 𝑛′′ then 𝑛′ = 𝑛′′.

Proof. We prove 𝑃 (𝑛, 𝑛′) = “for all 𝑛′′ for which 𝑛 doubledIs 𝑛′′, we have 𝑛′ = 𝑛′′”
by rule induction (on 𝑛 doubledIs 𝑛′). There are two ways that the derivation of
𝑛 doubledIs 𝑛′ can end:

• Case 1:

zero doubledIs zero

Show that 𝑃 (zero, zero): if zero doubledIs 𝑛′′, then zero = 𝑛′′. This
follows by inversion, because the only rule that could derive such a thing is

zero doubledIs zero

Therefore 𝑛′′ = zero, which is what we wanted to show.

• Case 2:
𝑛 doubledIs 𝑛′

suc(𝑛) doubledIs suc(suc(𝑛′))
Prove 𝑃 (𝑛, 𝑛′) implies 𝑃 (suc(𝑛), suc(suc(𝑛′))). The latter property is: if
suc(𝑛) doubledIs 𝑛′′, then suc(suc(𝑛′)) = 𝑛′′. Our inductive hypothesis is
the analogous statement about the premise: if 𝑛 doubledIs𝑚 then 𝑛′ =𝑚.
By inversion on the supposed derivation of suc(𝑛) doubledIs 𝑛′′, only one
rule applies:

𝑛 doubledIs𝑚′

suc(𝑛) doubledIs suc(suc(𝑚′))
This tells us that 𝑛′′ is of the form suc(suc(𝑚′)), so it remains to prove that
suc(suc(𝑚′)) = suc(suc(𝑛′)). By 𝑛 doubledIs 𝑛′ and 𝑛 doubledIs𝑚′ and
our inductive hypothesis,𝑚′ = 𝑛′. □

12

The above proof actually uses nested rule induction: we consider the two cases
of 𝑛 doubledIs 𝑛′, and in each case, we consider the two cases of 𝑛 doubledIs 𝑛′′

(implicitly, in our appeal to inversion).
By Lemmas 2.34 and 2.37, for every 𝑛 nat there is exactly one 𝑛′ such that

𝑛 doubledIs 𝑛′. In other words, doubling is in fact a function on natural numbers.
We will often use inference rules to define functions in this way.

Theorem 2.38 (Structural recursion for nat). To define a function 𝑓 on natural
numbers, one must:

• define 𝑓 (zero), and

• define 𝑓 (suc(𝑛)) for arbitrary 𝑛, given the value of 𝑓 (𝑛).

Proof. As with doubledIs, we can define a binary judgment 𝑛 maps-to 𝑛′ by the
inference rules:

zero maps-to . . .

𝑛 maps-to 𝑛′

suc(𝑛) maps-to (. . . 𝑛′ . . .)

The proofs of Lemmas 2.34 and 2.37 show that for any 𝑛 nat there is exactly one
𝑛′ for which 𝑛 maps-to 𝑛′, so that maps-to is the graph of a function. □

To perform rule induction on mutually-defined judgments, we need mutual
induction hypotheses.

Theorem 2.39 (Rule induction for even/odd). If

• 𝑃 (zero),

• for all 𝑜 odd, 𝑄 (𝑜) =⇒ 𝑃 (suc(𝑜)), and

• for all 𝑒 even, 𝑃 (𝑒) =⇒ 𝑄 (suc(𝑒)),

then 𝑃 (𝑒) holds for all 𝑒 even and 𝑄 (𝑜) holds for all 𝑜 odd.

Theorem 2.40. If 𝑒 even then 𝑒 nat, and if 𝑜 odd then 𝑜 nat.

Proof. We prove these by mutual rule induction.

• For the rule

zero even

we must show zero nat, which is true by an axiom.

13

• For the rule
𝑜 odd

suc(𝑜) even
our inductive hypothesis is 𝑜 nat and we must show suc(𝑜) nat, which holds
by the suc rule for nat.

• For the rule
𝑒 even

suc(𝑜) odd
our inductive hypothesis is 𝑒 nat and we must show suc(𝑒) nat, which holds
by the suc rule for nat. □

Remark 2.41. HtDP-heads might have noticed

collection of inference rules : data definition :: rule induction : template

except that rule induction is about constructing a proof out of the input derivation.
Structural recursion brings us full circle, using rule induction as a means of defining
an ordinary function using a recursive template.

5 Evaluation

I didn’t want to go a whole lecture without saying anything about programming
languages. Going back to the boolean expression language from the beginning
of the lecture, we can use inference rules to define a binary evaluation judgment,
𝑒 ⇓ 𝑒′, which explains how to recursively simplify any expression 𝑒 .

true ⇓ true false ⇓ false

𝑒 ⇓ true

not(𝑒) ⇓ false

𝑒 ⇓ false

not(𝑒) ⇓ true

𝑒1 ⇓ true 𝑒2 ⇓ 𝑒′2

if(𝑒1, 𝑒2, 𝑒3) ⇓ 𝑒′2

𝑒1 ⇓ false 𝑒3 ⇓ 𝑒′3

if(𝑒1, 𝑒2, 𝑒3) ⇓ 𝑒′3

14

	2 Inductive Definitions
	BNF grammars
	Inference rules
	Aside: abstract syntax trees
	More inductive structures
	Reasoning about inductive structures

	Least sets
	Rule induction
	Evaluation

