
Lecture Notes 4

Binding

Carlo Angiuli

B522: PL Foundations

February 5, 2025

In this lecture, we extend our notion of inductive definition to account for

variable binding; the resulting notion of “inductive definition with binding” is

often known as abstract binding trees (ABTs) or abstract syntax with binding.
Note that our textbook introduces the notions of abstract syntax and binding

simultaneously. These lecture notes correspond to Chapters 1, 2, and 3 of Harper

[Har16]; my explanation of structural recursion and rule induction for ABTs

follows that of Pitts [Pit06]. We will resume our discussion of type systems in

subsequent lectures.

1 Untyped 𝜆-calculus (first try)

Virtually every reasonable programming language includes variables in its syntax,

at minimum as the “formal parameters” of function definitions. Since you are

already familiar with Racket and lambda, our first example of a language with

variables will be the famed and minimalist untyped 𝜆-calculus.

Remark 4.1. The untyped 𝜆-calculus was invented in the 1930s by Alonzo Church

as a notation (on paper) for computable (i.e., partial recursive) functions; it sub-

sequently influenced the development of the Lisp programming language in the

1950s, from which Racket descends. Perhaps surprisingly, despite having no obvi-

ous “data,” the untyped 𝜆-calculus is a universal model of computation equivalent

to Turing machines, which are complex in comparison.

The point of today’s lecture will be to introduce the subtleties of variables

and to see why we should extend our notion of inductive definitions to support

binding natively. But let’s start by temporarily considering an encoding of the

𝜆-calculus as an ordinary inductive definition:

1

Variables? 𝑣 ::= 𝑥 | 𝑦 | 𝑧 | · · ·
Terms? 𝑒 ::= 𝑣 | lambda(𝑣, 𝑒) | app(𝑒, 𝑒)

Remark 4.2. In Racket, lambda(𝑣, 𝑒) is written (lambda (𝑣) 𝑒) and app(𝑒, 𝑒′) is
written (𝑒 𝑒′). (For us, function application is “just” another binary term former,

so we need a notation for it.) Unlike in Racket, all lambdas in the untyped 𝜆-

calculus (and in this class generally) have exactly one argument. We can represent

multi-argument functions by currying, or nesting lambdas and applying them

multiple times: (lambda (x) (lambda (y) (+ x y))).

There is already a lot to unpack in our inductive definition above:

• Every variable should be a term, but terms and variables are not interchange-

able. Inside of lambda(𝑥, . . .) we can use 𝑥 anywhere a term could go. But

there are some places where only a variable is permitted, in particular the

first argument to lambda. (You can’t write (lambda ((+ x y)) ...).)

• We want an infinite number of variables. To see why, suppose there were

only two variables, 𝑥 and 𝑦, and suppose we are writing a two-argument

function that returns a function:

(lambda (x) (lambda (y) (lambda (?) (... x y ...))))

The formal parameter of the innermost lambda has to be either 𝑥 or 𝑦, and

in either case we lose access to one of the two existing parameters. Having

an infinite number of variables lets us avoid worrying about “running out”

of variables in a sufficiently large term.

• In the same way that 𝑒 is a metavariable ranging over “actual” terms, 𝑣

is a metavariable ranging over “actual” variables. The difference between
variables and metavariables is that variables are actually part of the program-

ming language we’re specifying, whereas metavariables are just a notation

or technical device used in writing the specification.

Unfortunately, it’s common to use 𝑥,𝑦, 𝑧 for variables and metavariables

ranging over variables, and for the collection of variables to be left implicit.

This leads to the following commonly-seen notation:

Terms?? 𝑒 ::= 𝑥 | lambda(𝑥, 𝑒) | app(𝑒, 𝑒)

All that said, there are three important aspects of variables that our inductive

definition above does not capture (yet, at least): context-sensitivity, 𝛼-equivalence,

and substitution.

2

• Context-sensitivity: Our grammar says that every variable is always a

valid term, but a well-formed program should only contain variables that are

already “in scope”: lambda(𝑥, 𝑥) is a valid term, but 𝑥 isn’t (at top-level). The

variable 𝑥 should be a term if and only if there is an enclosing lambda(𝑥, . . .).
As a result, the 𝜆-calculus is not context-free and is thus not expressible as a

BNF grammar. In Section 2 we will show how to define a context-sensitive
term well-formedness judgment.

• 𝛼-equivalence: Variables have names because we need to be able to tell

them apart; inside lambda(𝑥, lambda(𝑦, . . .)), 𝑥 and 𝑦 refer to the first and

second inputs to this two-argument function respectively. However, the

names of variables should carry no other (formal) meaning: this function

should behave identically if its variables were instead named 𝑧 and𝑤 .

In Section 3 we will define 𝛼-equivalence, an equivalence relation on terms

which makes this intuition precise. In programming language theory, we

insist that 𝛼-equivalent terms are always treated identically.

• Substitution: Variables are formal stand-ins for arbitrary (or “varying”)

terms, often function arguments. As soon as we receive those inputs, we

will want to replace, or substitute, the variable with the given term.

2 Judgments in context

As we mentioned above, the variable 𝑥 should not be considered a term in general,

but it should be considered a term inside of an enclosing lambda(𝑥, . . .). To model

this, we consider the grammar of terms to have no variables, but to be extended by

the variable 𝑥 whenever we go inside lambda(𝑥, . . .):

• lambda(𝑥, lambda(𝑦, app(𝑥,𝑦))) is a term because, assuming 𝑥 is a term,

• lambda(𝑦, app(𝑥,𝑦)) is a term because, assuming 𝑦 is a term,

• app(𝑥,𝑦) is a term because

• 𝑥 is a term

• 𝑦 is a term

These “assumptions” are localized to all the bullet points contained (immediately

or transitively) inside the lambda bullet point in which they are made.

Exercise 4.3. Is lambda(𝑥, app(𝑥,𝑦)) a term under no assumptions?

Exercise 4.4. Is lambda(𝑥, app(lambda(𝑦, 𝑥), 𝑦)) a term under no assumptions?

3

We extend the judgmental machinery from the previous lecture to keep track

of the (unordered) set of currently-active assumptions 𝑥 tm, 𝑦 tm, . . . , which is

known as the context and written Γ. We write

Γ ⊢ 𝑒 tm

for the assertion that 𝑒 is a term, under the set of hypotheses Γ.

Remark 4.5. Judgments that are relative to a context are called hypothetical judg-
ments; judgments without a context are called categorical judgments. The ⊢ symbol

(\vdash) is called a turnstile,5 and the empty context is often written · (\cdot).
We define Γ ⊢ 𝑒 tm by the following inference rules. In these rules, Γ is a

metavariable ranging over all possible contexts, which in this system are unordered

lists of the form 𝑥 tm, 𝑦 tm,

Γ, 𝑥 tm ⊢ 𝑥 tm

Γ, 𝑥 tm ⊢ 𝑒 tm
Γ ⊢ lambda(𝑥, 𝑒) tm

Γ ⊢ 𝑒 tm Γ ⊢ 𝑒′ tm
Γ ⊢ app(𝑒, 𝑒′) tm

We can now rewrite the bulleted list above as a derivation tree:

𝑥 tm, 𝑦 tm ⊢ 𝑥 tm 𝑥 tm, 𝑦 tm ⊢ 𝑦 tm

𝑥 tm, 𝑦 tm ⊢ app(𝑥,𝑦) tm
𝑥 tm ⊢ lambda(𝑦, app(𝑥,𝑦)) tm

· ⊢ lambda(𝑥, lambda(𝑦, app(𝑥,𝑦))) tm

Let’s examine each rule carefully. The first rule, called the variable rule, says
that if our context (collection of hypotheses) includes 𝑥 tm, then 𝑥 tm. Note that

contexts are unordered, so when we write “Γ, 𝑥 tm” we really mean that the context

is of the form [some possibly-empty collection of hypotheses], and 𝑥 tm.

Remark 4.6. Sometimes people write the variable rule in one of these styles:

𝑥 tm ∈ Γ

Γ, 𝑥 tm ⊢ 𝑥 tm Γ, 𝑥 tm, Γ′ ⊢ 𝑥 tm

The second rule says that in order to show that lambda(𝑥, 𝑒) is a term in

context Γ, we must show that 𝑒 is a term in context Γ extended with the additional

hypothesis 𝑥 tm. The third rule says that in order to show that app(𝑒, 𝑒′) is a term
in context Γ, we must show that 𝑒 and 𝑒′ are both terms in context Γ.

5
Some students may have previously encountered turnstiles in the film Tenet (2020).

4

Remark 4.7. The phrase “𝑒 is a term” is now ambiguous, because this depends

on which variables are in the context. (lambda(𝑥, 𝑥) is a term in any context,

but 𝑥 or lambda(𝑦, 𝑥) are only terms in contexts containing 𝑥 tm.) We say that

𝑒 is a closed term if it is a term in the empty context. We will try to reserve the

ambiguous phrase “𝑒 is a term” for situations in which the intended context (empty

or otherwise) is clear from. . . context.

Remark 4.8. The horizontal line and the turnstile can both can be pronounced

“if. . . then. . . ” but they have different meanings. We write J1 ⊢ J2 only when J1

is a categorical judgment about a variable, which is being locally hypothesized in

order to derive J2. In contrast, writing
J1

J2

means that whenever J1 is globally true,

J2 is also globally true; here J1,J2 are usually hypothetical judgments.

2.1 Structural properties

We have said that the meaning of a hypothetical judgment J1, . . . ,J𝑛 ⊢ J is “as-

suming that J1, . . . ,J𝑛 hold, then J holds.” There are certain structural properties
that every

6
hypothetical judgment ought to satisfy in order for this interpretation

to make sense:

• Reflexivity: J ⊢ J . (“If J then J .”) We typically include a variable rule

which states this explicitly.

• Weakening: If J1, . . . ,J𝑛 ⊢ J then J1, . . . ,J𝑛,J𝑛+1 ⊢ J . (“You can add un-

necessary hypotheses.”) We typically check that this principle is admissible.

• Exchange: The order of J1, . . . ,J𝑛 does not affect the truth of the judgment.

We have asserted that contexts are unordered, although sometimes people

say that contexts are ordered and check that this principle is admissible.

• Substitution: See Section 4 and Lemma 4.27.

Theorem 4.9 (Weakening). If Γ ⊢ 𝑒 tm then Γ, 𝑦 tm ⊢ 𝑒 tm.

Proof. We prove that weakening is admissible by rule induction.

• Case

Γ, 𝑥 tm ⊢ 𝑥 tm
:

We must show Γ, 𝑥 tm, 𝑦 tm ⊢ 𝑥 tm, which follows from the variable rule.

6
There are some exceptions, known as substructural judgments.

5

• Case

Γ, 𝑥 tm ⊢ 𝑒 tm
Γ ⊢ lambda(𝑥, 𝑒) tm

:

We must show Γ, 𝑦 tm ⊢ lambda(𝑥, 𝑒) tm. Our inductive hypothesis is

Γ, 𝑥 tm, 𝑦 tm ⊢ 𝑒 tm, and the result follows by applying the lambda rule.

• Case

Γ ⊢ 𝑒 tm Γ ⊢ 𝑒′ tm
Γ ⊢ app(𝑒, 𝑒′) tm

:

We must show Γ, 𝑦 tm ⊢ app(𝑒, 𝑒′) tm. Our inductive hypotheses are

Γ, 𝑦 tm ⊢ 𝑒 tm and Γ, 𝑦 tm ⊢ 𝑒′ tm. We apply the app rule. □

3 𝛼-equivalence

Every lambda gives its formal parameter a name (such as 𝑥) which wemay then use

within the body of the lambda in order to refer to that particular formal parameter.

Programming language theorists regard the name 𝑥 as merely a notation linking

the formal parameter to its mentions; from this perspective, lambda(𝑥, 𝑥) and
lambda(𝑦,𝑦) are two different notations for the exact same term.

Put another way, we should think of variables not as names but as pointers to
the lambdas that introduce them. Below are two depictions of the term

lambda(𝑥, lambda(𝑦, app(𝑥,𝑦)))

first as an abstract syntax tree with named variables, and second as what is some-

times called an abstract binding tree, where variables are pointers to lambdas.

lambda

𝑥 lambda

𝑦 app

𝑥 𝑦

lambda

lambda

app

Two terms are 𝛼-equivalent if they differ only by the names of their bound

variables: that is, if they pictorially correspond to the same abstract binding trees.

6

Remark 4.10. By the rules in Section 2, variable nodes must point to a lambda node
that is the variable’s ancestor.

Remark 4.11. We say that the term lambda(𝑥, 𝑒) binds the variable 𝑥 , that 𝑥 is

a binder, and occurrences of 𝑥 inside 𝑒 are bound. A variable that is not bound

anywhere is called free. For example, in the subterm lambda(𝑦, app(𝑥,𝑦)) above,
the leftmost 𝑦 is a binder binding the rightmost 𝑦, and the 𝑥 is free.

Now that we have the idea of 𝛼-equivalence, let’s make it precise.

Definition 4.12. Write V for the set of variables. For any 𝑥,𝑦 ∈ V and Γ ⊢ 𝑒 tm
we inductively define the operation of swapping 𝑥 and 𝑦 in 𝑒 , written 𝑒 [𝑥 ↔ 𝑦]:

𝑧 [𝑥 ↔ 𝑦] =

𝑦 if 𝑧 = 𝑥

𝑥 if 𝑧 = 𝑦

𝑧 if 𝑧 ≠ 𝑥, 𝑧 ≠ 𝑦

lambda(𝑧, 𝑒) [𝑥 ↔ 𝑦] = lambda(𝑧 [𝑥 ↔ 𝑦], 𝑒 [𝑥 ↔ 𝑦])
app(𝑒, 𝑒′) [𝑥 ↔ 𝑦] = app(𝑒 [𝑥 ↔ 𝑦], 𝑒′ [𝑥 ↔ 𝑦])

Definition 4.13. For any Γ ⊢ 𝑒 tm and Γ ⊢ 𝑒′ tm, we inductively define the

relation 𝑒 =𝛼 𝑒′ stating that 𝑒 and 𝑒′ are 𝛼-equivalent, as follows:

• 𝑥 =𝛼 𝑥 for every variable 𝑥 ,

• lambda(𝑥, 𝑒) =𝛼 lambda(𝑥 ′, 𝑒′) if for some 𝑧 ∈ V that appears nowhere in

𝑥, 𝑒, 𝑥 ′, 𝑒′, we have 𝑒 [𝑥 ↔ 𝑧] =𝛼 𝑒′ [𝑥 ′ ↔ 𝑧], and

• app(𝑒1, 𝑒′1) =𝛼 app(𝑒2, 𝑒′2) if 𝑒1 =𝛼 𝑒′
1
and 𝑒2 =𝛼 𝑒′

2
.

Note that Definition 4.12 is totally oblivious to the binding structure of terms,

but Definition 4.13 is not: the second clause of Definition 4.13 tells us that in the

term lambda(𝑥, 𝑒), occurrences of 𝑥 inside of 𝑒 refer to this 𝑥 .

Example 4.14. We derive an 𝛼-equivalence using Definitions 4.12 and 4.13:

lambda(𝑥, lambda(𝑥, 𝑥)) =𝛼 lambda(𝑥, lambda(𝑦,𝑦))
lambda(𝑥, 𝑥) [𝑥 ↔ 𝑧] =𝛼 lambda(𝑦,𝑦) [𝑥 ↔ 𝑧]

lambda(𝑧, 𝑧) =𝛼 lambda(𝑦,𝑦)
𝑥 [𝑥 ↔ 𝑤] =𝛼 𝑦 [𝑦 ↔ 𝑤]

𝑤 =𝛼 𝑤

Remark 4.15. The second clause applies regardless of whether 𝑥 and 𝑥 ′ are equal.
We can always find some 𝑧 ∈ V that appears nowhere in 𝑥, 𝑒, 𝑥 ′, 𝑒′ because V is

infinite and 𝑒, 𝑒′ contain only finitely many variables.

7

Remark 4.16. 𝛼-equivalence is an equivalence relation on terms: it is reflexive,

symmetric, and transitive.

Commandment 4.17. Thou shalt treat 𝛼-equivalent terms in the same way.

Commandment 4.17 is more subtle than it may appear at first glance.

Definition 4.18. For any Γ ⊢ 𝑒 tm we define the set of free variables of 𝑒 (also
known as the support of 𝑒) fv(𝑒) inductively as follows:

fv(𝑥) = {𝑥}
fv(lambda(𝑥, 𝑒)) = fv(𝑒) \ {𝑥}

fv(app(𝑒, 𝑒′)) = fv(𝑒) ∪ fv(𝑒′)

Definition 4.18 respects 𝛼-equivalence. I’m not going to prove this, but working

through the following examples may help illustrate why it’s true:

fv(lambda(𝑥, 𝑥)) = ∅
fv(lambda(𝑦, app(𝑥,𝑦))) = {𝑥}
fv(lambda(𝑧, app(𝑥, 𝑧))) = {𝑥}

On the other hand, it would violate Commandment 4.17 to define an operation

vars(𝑒) which returns the set of all variables contained in a term,

vars(𝑥) = {𝑥}
vars(lambda(𝑥, 𝑒)) = {𝑥} ∪ vars(𝑒)

vars(app(𝑒, 𝑒′)) = vars(𝑒) ∪ vars(𝑒′)

because vars behaves differently on 𝛼-equivalent terms: vars(lambda(𝑥, 𝑥)) = {𝑥}
and vars(lambda(𝑦,𝑦)) = {𝑦}. (Nor can we define an operation computing the set

of bound variables in a term.)

We will get the hang of this throughout the semester, but one way to avoid

making mistakes is to follow what is known as the Barendregt convention: when
writing down terms, always give every binder a name that is different from every

other binder in the term, and also from every free variable.

Remark 4.19. Why can’t we just insist that every binder always has a different

name? Unfortunately, once we start talking about operational semantics we will

see that higher-order functions can duplicate lambda terms and thus binders.

8

4 Substitution

If binders are just notation for the formal parameters of functions, then variables are

fundamentally placeholders for the concrete inputs that those functions eventually
receive. When we eventually apply lambda(𝑥, 𝑒1) to an input 𝑒 , the result should

be 𝑒1 but with every 𝑥 inside it substituted with 𝑒 .

The subtlety here is that a purely textual substitution would be the wrong

notion of substitution: we want to replace every occurrence of 𝑥 that points to

this formal parameter 𝑥 , skipping any occurrence of 𝑥 that refers to something

else. On the flip side, we also want to ensure that we do not accidentally change

the referent of any other variables in 𝑒 or 𝑒1. In other words, this operation must

respect 𝛼-equivalence in all its inputs.

Definition 4.20 (Capture-avoiding substitution). Given terms 𝑒1 and 𝑒 and a

variable 𝑥 , we define inductively an operation 𝑒1 [𝑒/𝑥] (“𝑒1 with 𝑒 for 𝑥”) that

replaces occurrences of 𝑥 in 𝑒1 with 𝑒:

𝑦 [𝑒/𝑥] =
{
𝑒 if 𝑦 = 𝑥

𝑥 if 𝑦 ≠ 𝑥

lambda(𝑦, 𝑒1) [𝑒/𝑥] = lambda(𝑦, 𝑒1 [𝑒/𝑥]) if 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑒)
app(𝑒1, 𝑒2) [𝑒/𝑥] = app(𝑒1 [𝑒/𝑥], 𝑒2 [𝑒/𝑥])

Remark 4.21. Although capture-avoiding substitution is one of the most important

operations in programming language theory, nobody can agree on a notation for

it. Some notations include [𝑒/𝑥]𝑒1, 𝑒1 [𝑥/𝑒], 𝑒1 [𝑥 := 𝑒], (𝑥 := 𝑒)𝑒1, [𝑥 ↦→ 𝑒]𝑒1, . . .
The first and third cases are relatively straightforward: we replace 𝑥 with 𝑒 ,

leave non-𝑥 variables alone, and recur into applications. The second case raises

several questions: why are these two side conditions necessary, and how do we

define substitution into a lambda in the case that these conditions don’t hold?

To answer the second question first, these three cases do actually cover all

possible terms, because every lambda is 𝛼-equivalent to one whose binder is not

in {𝑥} ∪ fv(𝑒) (because V is infinite). This definition of 𝑒1 [𝑒/𝑥] may be called

𝛼-structurally recursive [Pit06] on 𝑒1, a variation of structural recursion that takes

𝛼-equivalence into account.

Remark 4.22. Analogously, one can fully define the addition of fractions as:

𝑎

𝑏
+ 𝑎′

𝑏
=
𝑎 + 𝑎′

𝑏

In order to add two fractions whose denominators differ, one must first convert

them into equivalent fractions with a common denominator.

9

The two side conditions themselves are necessary to ensure that the definition

respects 𝛼-equivalence. The first one is straightforward: it ensures that we stop at

any subterm of 𝑒1 that “shadows” or “re-binds” 𝑥 :

app(lambda(𝑥, lambda(𝑥, 𝑥)), 𝑒) “=” lambda(𝑥, 𝑥) [𝑒/𝑥] ≠ lambda(𝑥, 𝑒)

Intuitively, our substitution is meant to replace every 𝑥 that refers to the first/outer

𝑥 in the original term, but the third 𝑥 refers to the second/inner 𝑥 so it should not

be replaced. Another way to look at it is that the original term is 𝛼-equivalent to a

term which clearly should evaluate to the identity function, not lambda(𝑥, 𝑒):

app(lambda(𝑥, lambda(𝑦,𝑦)), 𝑒) “=” lambda(𝑦,𝑦) [𝑒/𝑥]
= lambda(𝑦,𝑦 [𝑒/𝑥])
= lambda(𝑦,𝑦)

The second side condition is trickier: it ensures that free variables in 𝑒 do not

accidentally become “captured” by binders in 𝑒1.

app(lambda(𝑥, lambda(𝑧, 𝑥)), 𝑧) “=” lambda(𝑧, 𝑥) [𝑧/𝑥] ≠ lambda(𝑧, 𝑧)

Here, the second/argument 𝑧 starts out as a free variable (perhaps it is bound by

some lambda on the outside) but it ends up pointing instead to the first 𝑧. The

original term is again 𝛼-equivalent to a term which clearly should evaluate to

lambda(𝑦, 𝑧), not the identity function.

app(lambda(𝑥, lambda(𝑦, 𝑥)), 𝑧) “=” lambda(𝑦, 𝑥) [𝑧/𝑥]
= lambda(𝑦, 𝑥 [𝑧/𝑥])
= lambda(𝑦, 𝑧)

Remark 4.23. The second side condition (𝑦 ∉ fv(𝑒)) is the capture-avoiding part of

capture-avoiding substitution. It is vacuously satisfied whenever 𝑒 is closed.

The “=” relation mentioned throughout this section has a name: it is called

𝛽-equivalence of untyped 𝜆-terms.

Definition 4.24. For any Γ ⊢ 𝑒 tm and Γ ⊢ 𝑒′ tm, we inductively define the

relation 𝑒 =𝛽 𝑒′ stating that 𝑒 and 𝑒′ are 𝛽-equivalent, as follows:

1. 𝑥 =𝛽 𝑥 for every variable 𝑥 ,

2. lambda(𝑥, 𝑒) =𝛽 lambda(𝑥, 𝑒′) if 𝑒 =𝛽 𝑒′,

3. app(𝑒1, 𝑒′1) =𝛽 app(𝑒2, 𝑒′2) if 𝑒1 =𝛽 𝑒′
1
and 𝑒2 =𝛽 𝑒′

2
, and

10

4. app(lambda(𝑥, 𝑒1), 𝑒) =𝛽 𝑒1 [𝑒/𝑥].

Remark 4.25. In accordance with Commandment 4.17, 𝛽-equivalence is defined

over 𝛼-equivalence classes of terms. In particular, in clause (2) of Definition 4.24

we choose the same bound variable name for both lambdas.

Remark 4.26. Clause (4) of Definition 4.24 is the interesting one; clauses (1–3)

simply state that 𝛽-equivalence is a congruence relation, i.e. that it is respected
by all term-formers. We could more tersely define 𝛽-equivalence as the least

congruence generated by clause (4).

Substitution is the final structural property of hypothetical judgments, allow-

ing us to discharge hypotheses that we can prove: if J1, . . . ,J𝑛,J𝑛+1 ⊢ J and

J1, . . . ,J𝑛 ⊢ J𝑛+1, then J1, . . . ,J𝑛 ⊢ J . In this case, if 𝑒1 is a term under the as-

sumption that 𝑥 tm (and possibly some other assumptions Γ), then we can remove

that hypothesis by replacing 𝑥 with an actual term (in context Γ).

Lemma 4.27 (Substitution). If Γ, 𝑥 tm ⊢ 𝑒1 tm and Γ ⊢ 𝑒 tm then Γ ⊢ 𝑒1 [𝑒/𝑥] tm.

5 Abstract binding trees

Add more words in this section.

The untyped 𝜆-calculus is extremely minimalist, and we will want to consider

programming languages with additional operators that bind variables. Accordingly,

we extend our notion of inductive definition so that each term-former can bind

zero or more variables in each of its subterms.

Before seeing the general case, let us give several examples. First, we might

imagine adding let to our language, written let 𝑥 = 𝑒 in 𝑒′. (In Racket, (let
([x e]) e’).) In this term, 𝑥 is a binder and 𝑥 is bound in 𝑒′ but not in 𝑒:

Γ ⊢ 𝑒 tm Γ, 𝑥 tm ⊢ 𝑒′ tm
Γ ⊢ (let 𝑥 = 𝑒 in 𝑒′) tm

Compare this to letrec 𝑥 = 𝑒 in 𝑒′, or (letrec ([x e]) e’), in which 𝑥 is

bound in both 𝑒′ and 𝑒:

Γ, 𝑥 tm ⊢ 𝑒 tm Γ, 𝑥 tm ⊢ 𝑒′ tm
Γ ⊢ (letrec 𝑥 = 𝑒 in 𝑒′) tm

Pattern-matching constructs like (match e1 [’() e2] [(cons x l) e3])
commonly bind multiple variables at once:

Γ ⊢ 𝑒1 tm Γ ⊢ 𝑒2 tm Γ, 𝑥 tm, ℓ tm ⊢ 𝑒3 tm
Γ ⊢ (match 𝑒1 [empty → 𝑒2] [cons(𝑥, ℓ) → 𝑒2]) tm

11

In the sameway that we use BNF notation to abbreviate a collection of inference

rules defining a 𝑒 tm judgment, Harper [Har16] extends BNF notation to primitively

support abstract binding trees (ABTs), or inductive definitions with variable binding
that are considered modulo 𝛼-equivalence.

In ABT notation, each subterm 𝑒 with a bound variable 𝑥 is prefixed by 𝑥 .; for

example, we write lambda(𝑥 .𝑒) instead of lambda(𝑥, 𝑒), and we write let(𝑒, 𝑥 .𝑒′)
instead of let(𝑥, 𝑒, 𝑒′) or let 𝑥 = 𝑒 in 𝑒′.

Terms 𝑒 ::= lambda(𝑥 .𝑒) | app(𝑒, 𝑒)

This grammar is precisely a shorthand for the three rules we wrote earlier:

Γ, 𝑥 tm ⊢ 𝑥 tm

Γ, 𝑥 tm ⊢ 𝑒 tm
Γ ⊢ lambda(𝑥, 𝑒) tm

Γ ⊢ 𝑒 tm Γ ⊢ 𝑒′ tm
Γ ⊢ app(𝑒, 𝑒′) tm

Note that the contexts are modified in accordance with the binding structure

indicated by the ABT, and that the the variable rule appears “automatically.” We

also automatically derive notions of 𝛼-equivalence and substitution for any ABT

definition, and we agree to follow Commandment 4.17.

Example 4.28. If we add a third clause let(𝑒, 𝑥 .𝑒′) to the untyped 𝜆-calculus, we

extend the definition of 𝑒 [𝑥 ↔ 𝑦] with one additional clause:

let(𝑒, 𝑧.𝑒′) [𝑥 ↔ 𝑦] = let(𝑒 [𝑥 ↔ 𝑦], 𝑧 [𝑥 ↔ 𝑦] .𝑒 [𝑥 ↔ 𝑦])

the definition of 𝑒 =𝛼 𝑒′ with one additional clause:

• let(𝑒1, 𝑥 .𝑒′1) =𝛼 let(𝑒2, 𝑦.𝑒′2) if 𝑒1 =𝛼 𝑒2 and for some 𝑧 ∈ V that appears

nowhere in 𝑥, 𝑒′
1
, 𝑦, 𝑒′

2
, we have 𝑒′

1
[𝑥 ↔ 𝑧] =𝛼 𝑒′

2
[𝑦 ↔ 𝑧],

the definition of fv(𝑒) with one additional clause:

fv(let(𝑒, 𝑥 .𝑒′)) = fv(𝑒) ∪ (fv(𝑒′) \ {𝑥})

and the definition of 𝑒 [𝑒′′/𝑥] with one additional clause:

let(𝑒,𝑦.𝑒′) [𝑒′′/𝑥] = let(𝑒 [𝑒′′/𝑥], 𝑦.𝑒′ [𝑒′′/𝑥]) if 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑒′′)

The benefit of the ABT notation is that it is highly systematic and can be

mechanically translated into inference rules; the drawback is that it can lead to

very unintuitive notations like let(𝑒, 𝑥 .𝑒′) for let 𝑥 = 𝑒 in 𝑒′. For this reason,
Harper [Har16] introduces syntax charts, which for each term give not only a

formal ABT notation (and thus a binding structure) but also an informal notation

and a brief English description.

12

Terms 𝑒 ::= lambda(𝑥 .𝑒) 𝜆𝑥 .𝑒 𝜆-abstraction

app(𝑒, 𝑒′) 𝑒 𝑒′ application

let(𝑒, 𝑥 .𝑒′) let 𝑥 = 𝑒 in 𝑒′ let-binding
letrec(𝑥 .𝑒, 𝑥 .𝑒′) letrec 𝑥 = 𝑒 in 𝑒′ letrec-binding
if(𝑒1, 𝑒2, 𝑒3) if 𝑒1 then 𝑒2 else 𝑒3 if-then-else
...

...
...

6 𝛼-rule induction

Add more words in this section.

Hopefully Example 4.28 convinced you that extending 𝛼-equivalence and substi-

tution to arbitrary programming languages with binding is both mechanically

straightforward and quite tedious. An additional wrinkle that we haven’t really

dwelled on yet is that every time we perform a structural recursion or rule induc-

tion over a language with binding, we need to ensure that the definition/property

in question respects 𝛼-equivalence.

Although these problems have been “solved” for decades, researchers con-

tinue to investigate alternative approaches with various benefits and drawbacks,

especially in light of the increasing prevalence of mechanized proofs in program-

ming language metatheory. (Indeed, there are distinguished papers at POPL 2024

[Pop24] and POPL 2025 [vBrü+25] about binding!) Some approaches include:

• using ABTs (and formalizing them: jsiek/abstract-binding-trees)

• nominal sets [Pit13]

• second-order [Fio08] and higher-order [HHP93] abstract syntax

• de Bruijn indices

Sadly we will not have time to get into these approaches in this class; instead,

my emphasis will be on making sure you understand how to write correct but

informal paper proofs by induction about languages with binding. We will see

examples of this in the next lecture (and every subsequent lecture).

Nevertheless, I will close this lecture by precisely stating two 𝛼-equivalence-

respecting rule induction principles for the Γ ⊢ 𝑒 tm judgment of the untyped

𝜆-calculus [CST21]. As before, V is a countably infinite set of variables.

Theorem 4.29 (𝛼-rule induction for terms I). To prove that a property 𝑃 (𝑒) holds
for all terms 𝑒 , it suffices to show that:

• 𝑃 respects 𝛼-equivalence: that is, if 𝑃 (𝑒) and 𝑒 =𝛼 𝑒′ then 𝑃 (𝑒′),

13

https://github.com/jsiek/abstract-binding-trees

• 𝑃 (𝑥) for every 𝑥 ∈ V,

• for all 𝑒 and 𝑒′, if 𝑃 (𝑒) and 𝑃 (𝑒′) then 𝑃 (app(𝑒, 𝑒′)), and

• there exists a finite set 𝑉 ⊂ V such that for all 𝑥 ∈ V \ 𝑉 and all 𝑒 , if 𝑃 (𝑒)
then 𝑃 (lambda(𝑥 .𝑒)).

Definition 4.30. A finite permutation of variables 𝜋 : V ↔ V is a permutation

𝜋 : V → V for which there exists a finite set 𝑉 ⊂ V such that 𝜋 (𝑥) = 𝑥 for all

𝑥 ∉ 𝑉 . We write 𝑒 [𝜋] for the operation that permutes all variables in 𝑒 according

to 𝜋 (directly generalizing Definition 4.12).

Theorem 4.31 (𝛼-rule induction for terms II). To prove that a property 𝑃 (𝑒) holds
for all terms 𝑒 , it suffices to show that:

• 𝑃 (𝑥) for every 𝑥 ∈ V,

• for all 𝑒 and 𝑒′, if 𝑃 (𝑒) and 𝑃 (𝑒′) then 𝑃 (app(𝑒, 𝑒′)), and

• for all 𝑥 and 𝑒 , if for all finite permutations 𝜋 : V ↔ V we have 𝑃 (𝑒 [𝜋]), then
𝑃 (lambda(𝑥 .𝑒)).

talk about 𝛼-structural recursion?

References

[CST21] Ernesto Copello, Nora Szasz, and Álvaro Tasistro. “Formalization

of metatheory of the Lambda Calculus in constructive type theory

using the Barendregt variable convention”. In: Mathematical Struc-
tures in Computer Science 31.3 (2021), pp. 341–360. doi: 10.1017/
S0960129521000335.

[Fio08] Marcelo Fiore. “Second-Order and Dependently-Sorted Abstract Syn-

tax”. In: 23rd Annual IEEE Symposium on Logic in Computer Science
(LICS 2008). 2008, pp. 57–68. doi: 10.1109/LICS.2008.38.

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.

doi: 10.1017/CBO9781316576892.

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. “A framework

for defining logics”. In: J. ACM 40.1 (Jan. 1993), pp. 143–184. issn:

0004-5411. doi: 10.1145/138027.138060.

14

https://doi.org/10.1017/S0960129521000335
https://doi.org/10.1017/S0960129521000335
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1145/138027.138060

[Pit06] Andrew M. Pitts. “Alpha-structural recursion and induction”. In: Jour-
nal of the ACM 53.3 (May 2006), pp. 459–506. issn: 0004-5411. doi:

10.1145/1147954.1147961.

[Pit13] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Sci-
ence. Vol. 57. Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press, 2013. isbn: 9781107017788. doi: 10.1017/
CBO9781139084673.

[Pop24] Andrei Popescu. “Nominal Recursors as Epi-Recursors”. In: Proceed-
ings of the ACM on Programming Languages 8.POPL (Jan. 2024). doi:

10.1145/3632857.

[vBrü+25] Jan van Brügge, James McKinna, Andrei Popescu, and Dmitriy Traytel.

“Barendregt Convenes with Knaster and Tarski: Strong Rule Induction

for Syntax with Bindings”. In: Proceedings of the ACM on Programming
Languages 9.POPL (Jan. 2025). doi: 10.1145/3704893.

15

https://doi.org/10.1145/1147954.1147961
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1017/CBO9781139084673
https://doi.org/10.1145/3632857
https://doi.org/10.1145/3704893

	4 Binding
	Untyped λ-calculus (first try)
	Judgments in context
	Structural properties

	α-equivalence
	Substitution
	Abstract binding trees
	α-rule induction

