
Lecture Notes 5
Simply-typed 𝜆-calculus

Carlo Angiuli

B522: PL Foundations
February 12, 2025

This lecture introduces a famous programming language known as the simply-
typed 𝜆-calculus (STLC), for which we prove type safety. These lecture notes
correspond to Section 8.2 and Chapter 10 of Harper [Har16].

1 Syntax

The simply-typed 𝜆-calculus builds directly upon our previous two topics: as its
name suggests, it has types and 𝜆s. As in the lecture on type safety, we will endow
the language with statics (a type system) and dynamics (an operational semantics)
and show that these agree (satisfy type safety). Because this language has binding,
note that we will consider terms up to 𝛼-equivalence, our statics will require
contexts, and our dynamics will require substitution.

We start by introducing two basic judgments 𝜏 ty and Γ ⊢ 𝑒 tm. For the first
time, the grammar of types has not only basic types but type operators as well.

Types 𝜏 ::= unit unit unit type
arr(𝜏1, 𝜏2) 𝜏1 → 𝜏2 function type
prod(𝜏1, 𝜏2) 𝜏1 × 𝜏2 product type

Terms 𝑒 ::= null () nullary tuple
lambda(𝜏, 𝑥 .𝑒) 𝜆𝑥 : 𝜏 .𝑒 𝜆-abstraction
app(𝑒1, 𝑒2) 𝑒1 𝑒2 application
pair(𝑒1, 𝑒2) (𝑒1, 𝑒2) ordered pair
fst(𝑒) fst(𝑒) first projection
snd(𝑒) snd(𝑒) second projection

As discussed in the previous lecture, bywriting the syntax of this language as an
ABT, we automatically derive notions of 𝛼-equivalence, free and bound variables,

1



and capture-avoiding substitution for terms. Like the untyped 𝜆-calculus, 𝜆s are
the only source of binding in this language.

2 Type system

This time we start with the type system. Just as the Γ ⊢ 𝑒 tm judgment requires us
to maintain a context of which variables are in scope, our typing judgment will
require a context that keeps track not only of which variables are in scope but
also what types they are assumed to have. These typing contexts have the form
𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 (where 𝜏𝑖 ty for each 𝑖) and are abbreviated Γ as before.

Definition 5.1 (Type system). For 𝑥1 tm, . . . , 𝑥𝑛 tm ⊢ 𝑒 tm and 𝜏 ty, we define the
judgment 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏 (“𝑒 has type 𝜏 in context 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛”) by
the following inference rules:

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
var

Γ ⊢ () : unit
unit-intro

Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro
Γ ⊢ 𝑓 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒1 : 𝜏1

Γ ⊢ 𝑓 𝑒1 : 𝜏2
→-elim

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

×-intro
Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ fst(𝑒) : 𝜏1
×-elim1

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ snd(𝑒) : 𝜏2
×-elim2

Because our languages are going to get more and more complex, we will
start giving systematic names to typing rules to make it easier to refer to them.
In addition to the variable rule (which will be present in all systems), for each
type former we have some number of introduction rules explaining how to create
something of such a type, and some number of elimination rules explaining how
to use something of such a type.7 (These names are optional but often written to
the right of the horizontal lines, via \infer*[right=name]{...}{...}.)
Remark 5.2. The simply-typed 𝜆-calculus (and many systems we consider this
semester) is quite modular in the sense that it is possible to selectively add and
remove types without disrupting the desirable properties of the system. (Harper

7The introduction/elimination distinction is clearest for type operators, because there are only
a few primitives that generically apply to all pairs, functions, etc. In contrast, one might imagine
including dozens of primitives that create and/or use nums.

2



[Har16] treats function and product types in separate chapters!) However, it is im-
portant to add or remove type formers, their introduction forms, their elimination
forms, and the relevant operational semantics rules as a package deal.
Remark 5.3. In fact, there is some slight disagreement about which type formers
are part of the STLC, with some authors omitting product and/or unit types. The
STLC always includes function types, and always omits various advanced features
(such as polymorphism) that are not considered “simple types.”
Exercise 5.4. That said, it is very important that this language include the unit
type—or at least some other basic type such as num or bool—in addition to function
and product types. Why?

As before, our type system assigns a unique type to every term.

Lemma 5.5 (Uniqueness of types). If Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒 : 𝜏 ′ then 𝜏 = 𝜏 ′.

This time, however, there is a lot to say about why uniqueness of types holds.

• We require the same context Γ in both typing judgments. The reason should
be clear after a moment’s thought: otherwise the variable 𝑥 could clearly
have any type, depending on what type it was declared at.

• It is essential that 𝜆-abstractions come with a type annotation for their
argument. Omitting type annotations would let us derive · ⊢ 𝜆𝑥.𝑥 : 𝜏 → 𝜏

for any type 𝜏 , breaking uniqueness of types.

• It may nevertheless seem that uniqueness of types fails, because in the
context 𝑥 : unit, 𝑥 : unit × unit we can derive that 𝑥 has both the type
unit and the type unit × unit. Note however that every variable in the
context came from a binder, and any use of a variable refers unambiguously
to one binder, even if we inadvertently gave two binders the same name.
This apparent failure of uniqueness of types is therefore really just a nota-
tional ambiguity, because the binding structure of our term disambiguates
which context entry the variable 𝑥 points to. There are a few ways to address
this ambiguity, such as regarding contexts as ordered and restricting the
variable rule to point to the most recent copy of a given variable.
We will instead require that all variables in a given context are distinct,
𝛼-varying bound variables if necessary in the→-introduction rule.

Now that the typing judgment has contexts, we can and should also prove that
typing satisfies the structural properties of hypothetical judgments. Reflexivity is
handled by the var rule; exchange is automatic as long as contexts are unordered;
we will discuss substitution later; and weakening is stated as follows.

3



Lemma 5.6 (Weakening). If Γ ⊢ 𝑒 : 𝜏 and 𝜏 ′ ty then Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 .

As discussed above, it is important that 𝑥 does not already occur in Γ. Some
authors add this as an additional hypothesis to the statement of weakening, but in
this class we will regard this as part of what it means to respect 𝛼-equivalence.

3 Operational semantics

Next, we define the operational meaning of programs by again specifying which
programs have successfully finished evaluating (𝑒 val) and what it means to take a
single step of computation (𝑒 ↦−→ 𝑒′). Although our term language now contains
variables, we restrict evaluation to closed terms (terms in the empty context),
because it does not make sense to run a program that contains unbound variables.

Definition 5.7 (Values). For · ⊢ 𝑒 tm, we define the judgment 𝑒 val (“𝑒 is a value”)
by the following inference rules.

() val 𝜆𝑥 : 𝜏 .𝑒 val
𝑣1 val 𝑣2 val

(𝑣1, 𝑣2) val

Note that each introduction form has a value rule, but details vary: pairs are
only values when both subterms are values, but 𝜆s are always values. (In fact, the
subterm of a 𝜆 has a free variable, so it is not eligible to be a value.)

Definition 5.8 (Small-step operational semantics). For · ⊢ 𝑒 tm, we define the
judgment 𝑒 ↦−→ 𝑒′ (“𝑒 steps to 𝑒′”) by the following inference rules.

𝑓 ↦−→ 𝑓 ′

𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1

𝑒1 ↦−→ 𝑒′1

(𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ (𝜆𝑥 : 𝜏1.𝑒2) 𝑒′1

𝑣1 val

(𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→ 𝑒2 [𝑣1/𝑥]
𝑒1 ↦−→ 𝑒′1

(𝑒1, 𝑒2) ↦−→ (𝑒′1, 𝑒2)
𝑣1 val 𝑒2 ↦−→ 𝑒′2

(𝑣1, 𝑒2) ↦−→ (𝑣1, 𝑒′2)

𝑒 ↦−→ 𝑒′

fst(𝑒) ↦−→ fst(𝑒′)
𝑒 ↦−→ 𝑒′

snd(𝑒) ↦−→ snd(𝑒′)

𝑣1 val 𝑣2 val

fst((𝑣1, 𝑣2)) ↦−→ 𝑣1

𝑣1 val 𝑣2 val

snd((𝑣1, 𝑣2)) ↦−→ 𝑣2

Remark 5.9. As before, the rules above can be divided into principal reductions
and congruence transitions. In this system, every principal reduction concerns

4



an elimination form that is applied to an introduction form: application of a 𝜆 or
projection from a pair. Reductions of this form are known as 𝛽-reductions.

Once again there are several “sanity check” lemmas to prove here.

Lemma 5.10 (Finality of values). If 𝑣 val then there is no 𝑒′ such that 𝑣 ↦−→ 𝑒′.

Using finality of values, we can prove determinacy.

Lemma 5.11 (Determinacy). If 𝑒 ↦−→ 𝑒′ and 𝑒 ↦−→ 𝑒′′ then 𝑒′ = 𝑒′′.

Although proving determinacy is not difficult, it would have been easy to
accidentally define a non-deterministic transition system. In the above system:

• To evaluate a pair, we first evaluate the first component (until it reaches a
value), and only then do we evaluate the second component.

• To evaluate fst and snd we insist on fully evaluating their argument, even
though this may involve evaluating the unused component of a pair.

• In an application, we first evaluate the function, then the argument (but
only after the function is fully evaluated), then perform the substitution (but
only after the function and argument are fully evaluated).

Other deterministic evaluation orders are possible too; for example, we could
certainly evaluate pairs and applications right-to-left (although left-to-right is
common). What is important is that at most one rule applies to any given term.
Exercise 5.12. If we replace the two pair-stepping rules above with the following
rules, determinacy fails. Why?

𝑒1 ↦−→ 𝑒′1

(𝑒1, 𝑒2) ↦−→ (𝑒′1, 𝑒2)
𝑒2 ↦−→ 𝑒′2

(𝑒1, 𝑒2) ↦−→ (𝑒1, 𝑒′2)

Remark 5.13. Pairs of overlapping transition rules are called critical pairs.
There are other perfectly good deterministic evaluation orders that differ more

substantially from ours. For example, we could say that all pairs are values, which
would involve deleting the two pair-stepping rules, deleting the premises of the
pair value rule, and deleting the premises of the fst and snd principal reductions.
For functions, we could similarly 𝛽-reduce as soon as the function is a 𝜆 rather than
evaluating its argument. Such an evaluation strategy is called lazy or by-name, in
contrast to our eager or by-value strategy.

5



Definition 5.14 (Lazy operational semantics). An alternative definition of 𝑣 val
and 𝑒 ↦−→ 𝑒′ is:

() val 𝜆𝑥 : 𝜏 .𝑒 val (𝑒1, 𝑒2) val

𝑓 ↦−→ 𝑓 ′

𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1 (𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ 𝑒2 [𝑒1/𝑥]
𝑒 ↦−→ 𝑒′

fst(𝑒) ↦−→ fst(𝑒′)

𝑒 ↦−→ 𝑒′

snd(𝑒) ↦−→ snd(𝑒′) fst((𝑒1, 𝑒2)) ↦−→ 𝑒1 snd((𝑒1, 𝑒2)) ↦−→ 𝑒2

Depending on the rest of the language, eager and lazy may give some terms
significantly different observable behaviors. (What if we have a checked runtime
error?) Regardless, eager and lazy almost always result in different values and
evaluation traces. We proceed with eager dynamics for the rest of this lecture.

Since program evaluation is defined by repeatedly taking single steps until
reaching a value, a new important “sanity check” is that stepping always turns a
closed term into another closed term.

Lemma 5.15. If · ⊢ 𝑒 tm and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ tm.

Proof. Straightforward rule induction on 𝑒 ↦−→ 𝑒′, with one interesting case:

𝑣1 val

(𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→ 𝑒2 [𝑣1/𝑥]

Showing that the left-hand side being closed implies that the right-hand side
is closed boils down to the following fact: “If 𝑥 : 𝜏1 ⊢ 𝑒2 tm and · ⊢ 𝑣1 tm then
· ⊢ 𝑒2 [𝑣1/𝑥] tm.” This follows from the substitution lemma for the Γ ⊢ 𝑒 tm
judgment, which can be proven by a straightforward rule induction. □

4 Type safety

Once again, there are some closed terms whose behavior is left unspecified by our
operational semantics: terms that neither step to another term nor are values.
Exercise 5.16. Give a few different examples of closed terms that are stuck.

We will prove type safety—well-typed terms don’t get stuck—which again
follows from progress and preservation. Their statements are almost identical to
the last time, except that we need to add a few turnstiles.

6



Theorem 5.17 (Type safety).

1. If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then · ⊢ 𝑒′ : 𝜏 .

2. If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′.

Exercise 5.18. If we’re only interested in well-typed closed terms, then why did we
define the typing judgment for arbitrary contexts?

As before, we need a canonical forms lemma (Lemma 5.19) in order to prove
progress (Lemma 5.21). This time, because our operational semantics uses sub-
stitution, we will also need a typed substitution lemma (Lemma 5.22) in order to
prove preservation (Lemma 5.23).

Lemma 5.19 (Canonical forms). Suppose · ⊢ 𝑣 : 𝜏 and 𝑣 val. Then:

1. If 𝜏 = unit, then 𝑣 = ().

2. If 𝜏 = 𝜏1 → 𝜏2, then 𝑣 = 𝜆𝑥 : 𝜏1.𝑒2 where 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2.

3. If 𝜏 = 𝜏1 × 𝜏2, then 𝑣 = (𝑣1, 𝑣2) where 𝑣1 val, 𝑣2 val, · ⊢ 𝑣1 : 𝜏1, and · ⊢ 𝑣2 : 𝜏2.

Proof. By inversion on · ⊢ 𝑣 : 𝜏 and 𝑣 val. □

Exercise 5.20. What does the canonical forms lemma tell us about values of type
unit × unit? What about values of type unit → unit? What about values of
type unit × (unit → unit)?

Lemma 5.21 (Progress). If · ⊢ 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′ for some 𝑒′.

Proof. By rule induction on · ⊢ 𝑒 : 𝜏 .

• Case
Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

var :

This case cannot happen in the empty context.

• Cases
Γ ⊢ () : unit

unit-intro ,
Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2

Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2
→-intro :

These are values.

• Case
Γ ⊢ 𝑓 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒1 : 𝜏1

Γ ⊢ 𝑓 𝑒1 : 𝜏2
→-elim :

We show that 𝑓 𝑒1 ↦−→ 𝑒′ for some 𝑒′. (𝑓 𝑒1 is never a value.) By our
first inductive hypothesis, either 𝑓 val or 𝑓 ↦−→ 𝑓 ′. In the latter case,
𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1, completing the proof.

7



In the former case where 𝑓 val, by Lemma 5.19 we have 𝑓 = 𝜆𝑥 : 𝜏1.𝑒2. By our
second inductive hypothesis, either 𝑒1 val or 𝑒1 ↦−→ 𝑒′1. In the first subcase,
(𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ 𝑒2 [𝑒1/𝑥]. In the second subcase, (𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ (𝜆𝑥 :
𝜏1.𝑒2) 𝑒′1.

• Case
Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2

Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2
×-intro :

We must show that (𝑒1, 𝑒2) is a value or takes a step, and we know that each
of 𝑒1 and 𝑒2 is a value or takes a step.

– If 𝑒1 ↦−→ 𝑒′1, then (𝑒1, 𝑒2) ↦−→ (𝑒′1, 𝑒2).
– If 𝑒1 val and 𝑒2 ↦−→ 𝑒′2, then (𝑒1, 𝑒2) ↦−→ (𝑒1, 𝑒′2).
– If 𝑒1 val and 𝑒2 val, then (𝑒1, 𝑒2) val.

• Case
Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ fst(𝑒) : 𝜏1
×-elim1 :

By our inductive hypothesis, 𝑒 val or 𝑒 ↦−→ 𝑒′. In the former case, by
Lemma 5.19 we have 𝑒 = (𝑣1, 𝑣2) so fst(𝑒) ↦−→ 𝑣1. In the latter case,
fst(𝑒) ↦−→ fst(𝑒′).

• Case
Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ snd(𝑒) : 𝜏2
×-elim2 :

Similar to previous case. □

Lemma 5.22 (Substitution). If Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 ′ then Γ ⊢ 𝑒 [𝑒′/𝑥] : 𝜏 .
Proof. By rule induction on Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 .

• For the var rule there are two separate cases, depending on whether the
variable 𝑥 being substituted is the same as the variable term.

– Case
Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

var :

In this case the variable in the var rule is 𝑥 , so 𝑒 = 𝑥 and 𝜏 = 𝜏 ′. We
have Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 and want to show Γ ⊢ 𝑥 [𝑒′/𝑥] : 𝜏 .
But 𝑥 [𝑒′/𝑥] = 𝑒′ so this holds by assumption.

– Case
Γ′, 𝑥 : 𝜏 ′, 𝑦 : 𝜏 ⊢ 𝑦 : 𝜏

var :

In this case the variable in the var rule is 𝑦 ≠ 𝑥 , so 𝑒 = 𝑦 and Γ =

(Γ′, 𝑦 : 𝜏). We have Γ′, 𝑥 : 𝜏 ′, 𝑦 : 𝜏 ⊢ 𝑦 : 𝜏 and Γ′, 𝑦 : 𝜏 ⊢ 𝑒′ : 𝜏 ′ and
want to show Γ′, 𝑦 : 𝜏 ⊢ 𝑦 [𝑒′/𝑥] : 𝜏 . But 𝑦 [𝑒′/𝑥] = 𝑦 (because 𝑦 ≠ 𝑥)
so this holds by the var rule.

8



• Case
Γ, 𝑥 : 𝜏 ′ ⊢ () : unit

unit-intro :

We assume Γ ⊢ 𝑒′ : 𝜏 ′ and must show Γ ⊢ () [𝑒′/𝑥] : unit. But () [𝑒′/𝑥] = ()
so this holds by unit-intro.

• Case
Γ, 𝑥 : 𝜏 ′, 𝑦 : 𝜏1 ⊢ 𝑒2 : 𝜏2

Γ, 𝑥 : 𝜏 ′ ⊢ 𝜆𝑦 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2
→-intro :

We assume Γ ⊢ 𝑒′ : 𝜏 ′ and must show Γ ⊢ (𝜆𝑦 : 𝜏1.𝑒2) [𝑒′/𝑥] : 𝜏1 → 𝜏2. By
the IH we have Γ, 𝑦 : 𝜏1 ⊢ 𝑒2 [𝑒′/𝑥] : 𝜏2. We can choose a fresh name for the
binder 𝑦 (such that 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑒′)), in which case (𝜆𝑦 : 𝜏1.𝑒2) [𝑒′/𝑥] =
𝜆𝑦 : 𝜏1.(𝑒2 [𝑒′/𝑥]). Thus we must show Γ ⊢ 𝜆𝑦 : 𝜏1.(𝑒2 [𝑒′/𝑥]) : 𝜏1 → 𝜏2,
which follows from the IH and →-intro.

• Case
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑓 : 𝜏1 → 𝜏2 Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝜏1

Γ, 𝑥 : 𝜏 ′ ⊢ 𝑓 𝑒1 : 𝜏2
→-elim :

We assume Γ ⊢ 𝑒′ : 𝜏 ′ andmust show Γ ⊢ (𝑓 𝑒1) [𝑒′/𝑥] : 𝜏2. But (𝑓 𝑒1) [𝑒′/𝑥] =
(𝑓 [𝑒′/𝑥]) (𝑒1 [𝑒′/𝑥]) so this follows from the two IHs and→-elim.

• Case
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒1 : 𝜏1 Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒2 : 𝜏2

Γ, 𝑥 : 𝜏 ′ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2
×-intro :

Similar to previous case.

• Case
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ, 𝑥 : 𝜏 ′ ⊢ fst(𝑒) : 𝜏1
×-elim1 :

Similar to previous case.

• Case
Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ, 𝑥 : 𝜏 ′ ⊢ snd(𝑒) : 𝜏2
×-elim2 :

Similar to previous case. □

Lemma 5.23 (Preservation). If · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then 𝑒′ : 𝜏 .

Proof. By rule induction on 𝑒 ↦−→ 𝑒′.

• Case
𝑓 ↦−→ 𝑓 ′

𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1
:

By inversion, the only way · ⊢ 𝑓 𝑒1 : 𝜏 can hold is for · ⊢ 𝑓 : 𝜏1 → 𝜏 and
· ⊢ 𝑒1 : 𝜏1 to hold. By the IH, · ⊢ 𝑓 ′ : 𝜏1 → 𝜏 , so by →-elim, · ⊢ 𝑓 ′ 𝑒1 : 𝜏 .

9



• Case
𝑒1 ↦−→ 𝑒′1

(𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ (𝜆𝑥 : 𝜏1.𝑒2) 𝑒′1
:

Similar to previous case.

• Case
𝑣1 val

(𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→ 𝑒2 [𝑣1/𝑥]
:

By inversion, the only way · ⊢ (𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 : 𝜏 can hold is for 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏
and · ⊢ 𝑣1 : 𝜏1 to hold. By Lemma 5.22 (Substitution), · ⊢ 𝑒2 [𝑣1/𝑥] : 𝜏 .

• Case
𝑒1 ↦−→ 𝑒′1

(𝑒1, 𝑒2) ↦−→ (𝑒′1, 𝑒2)
:

By inversion, 𝜏 = 𝜏1 × 𝜏2 and · ⊢ 𝑒1 : 𝜏1 and · ⊢ 𝑒2 : 𝜏2. By the IH, · ⊢ 𝑒′1 : 𝜏1,
so by ×-intro, · ⊢ (𝑒′1, 𝑒2) : 𝜏1 × 𝜏2.

• Case
𝑣1 val 𝑒2 ↦−→ 𝑒′2

(𝑣1, 𝑒2) ↦−→ (𝑣1, 𝑒′2)
:

Similar to previous case.

• Case
𝑒 ↦−→ 𝑒′

fst(𝑒) ↦−→ fst(𝑒′)
:

By inversion, · ⊢ 𝑒 : 𝜏 × 𝜏2. By IH, · ⊢ 𝑒′ : 𝜏 × 𝜏2. By ×-elim1, · ⊢ fst(𝑒) : 𝜏 .

• Case
𝑒 ↦−→ 𝑒′

snd(𝑒) ↦−→ snd(𝑒′)
:

Similar to previous case.

• Cases
𝑣1 val 𝑣2 val

fst((𝑣1, 𝑣2)) ↦−→ 𝑣1
,

By inversion, · ⊢ 𝑣1 : 𝜏 (and · ⊢ 𝑣2 : 𝜏2).

• Case
𝑣1 val 𝑣2 val

snd((𝑣1, 𝑣2)) ↦−→ 𝑣2
:

Similar to previous case. □

This completes our proof of type safety. It is additionally true that every well-
typed program in the STLC terminates, but we will not be able to prove this using
techniques we have learned so far in class. We will return to this theorem later.

Theorem 5.24 (Termination). If · ⊢ 𝑒 : 𝜏 then 𝑒 ↦−→∗ 𝑣 where 𝑣 val.

10



Exercise 5.25. The hypothesis · ⊢ 𝑒 : 𝜏 is necessary. Give an example of an ill-typed
term that does not terminate.

References

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.
doi: 10.1017/CBO9781316576892.

11

https://doi.org/10.1017/CBO9781316576892

	5 Simply-typed λ-calculus
	Syntax
	Type system
	Operational semantics
	Type safety


