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So far this semester we seen how to formally define programming languages

in terms of abstract binding trees, type systems, and operational semantics, and

we have learned the proof technique of progress and preservation for showing that

a language’s type system and operational semantics cohere with one another.

Type safety is an important property for a language to have, but there are

many other properties we might wish to prove about a language, such as:

• that all programs terminate;

• that two particular functions or code fragments are indistinguishable;

• that it is impossible to define a function with a particular property; or

• that there are exactly 𝑛 extensionally distinct functions of a certain type.

All of these properties can be established using a powerful proof technique

known as the technique of logical relations. In today’s lecture we will introduce

logical relations with the goal of proving that all programs in the simply-typed

𝜆-calculus terminate.

The history of logical relations is too lengthy to do justice to here, but some

incomplete remarks are warranted. The key idea behind logical relations was

invented by Tait [Tai67] in order to analyze term equivalence in System T. (The

proof technique is sometimes called Tait’s method.) Several years later, Girard
generalized Tait’s method by introducing candidats de réductibilité in his proof

of strong normalization for System F [Gir71]. The term logical relations was
introduced by Plotkin [Plo73] in his study of 𝜆-definability, and later cemented by

Statman [Sta85] who further refined the technique.
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From the 1970s through the early 2000s, the technique of logical relations was

used to great effect in the study of various 𝜆-calculi, but it remained highly techncial

to use logical relations to reason about languages with effects such as recursive

types and general references. In 2001, Appel and McAllester [AM01] invented the

technique of step-indexed logical relations, which can be readily adapted to support

these and other realistic language features. Thanks to Appel and McAllester and

subsequent researchers, especially Ahmed [Ahm06], step-indexed logical relations

are currently one of our best tools for analyzing realistic programming languages.

This material does not have a direct analog in Harper [Har16], but Chapters

46–48 concern logical relations for other languages.

1 A first attempt

Before introducing the technique of logical relations, it is instructive to see what’s

hard about proving termination for STLC.

Remark 9.1. Recall that for our purposes, the STLC is the call-by-value program-

ming language with unit, 𝜏1 → 𝜏2, and 𝜏1 × 𝜏2, defined using a small-step op-

erational semantics. We will take as granted the “basic” lemmas of uniqueness

of types, weakening, finality of values, determinacy, and substitution; we will

carefully note any appeals to canonical forms, progress, or preservation.

Definition 9.2. Given a closed term · ⊢ 𝑒 tm, we say that 𝑒 ⇓ 𝑣 , or 𝑒 evaluates to 𝑣 ,
if 𝑒 ↦−→∗ 𝑣 and 𝑣 val. When such a 𝑣 exists, we say that 𝑒 terminates; we may write

𝑒 ⇓ if the identity of 𝑣 is not important. (By determinacy and finality of values, 𝑣 is

unique if it exists.)

Remark 9.3. We’ve also used the ⇓ notation to refer to an inductively-defined

evaluation judgment as an alternative to small-step operational semantics. For

the purposes of this lecture we are taking the small-step operational semantics as

primitive but reclaiming the 𝑒 ⇓ 𝑣 notation to mean iterated small-step reduction.

Let us start by recalling what type safety gives us:

Lemma 9.4 (Type soundness). Suppose · ⊢ 𝑒 : 𝜏 and 𝑒 ⇓ 𝑣 . Then:

• If 𝜏 = unit, then 𝑣 = ().

• If 𝜏 = 𝜏1 → 𝜏2, then 𝑣 = 𝜆𝑥 : 𝜏1.𝑒2.

• If 𝜏 = 𝜏1 × 𝜏2, then 𝑣 = (𝑣1, 𝑣2) where 𝑣1 val and 𝑣2 val.

Proof. Recalling that 𝑒 ⇓ 𝑣 means that 𝑒 ↦−→∗ 𝑣 and 𝑣 val, we proceed by rule

induction on 𝑒 ↦−→∗ 𝑣 .
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• Case

𝑒 ↦−→∗ 𝑒
:

In this case · ⊢ 𝑒 : 𝜏 and 𝑒 val. The result follows by canonical forms.

• Case

𝑒 ↦−→ 𝑒′ 𝑒′ ↦−→∗ 𝑣

𝑒 ↦−→∗ 𝑣
:

By · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ and preservation, we have · ⊢ 𝑒′ : 𝜏 . The result
follows by the induction hypothesis for 𝑒′ ⇓ 𝑣 . □

In other words, type soundness tells us that the shape of the value of a well-

typed, terminating term is determined by its type. Combined with termination—

the fact that all well-typed terms terminate—we learn that all well-typed terms

terminate with a value whose shape is determined by their type. (Recall that both

of these results require a well-typed term; ill-typed terms can get stuck or diverge.)

So on the one hand, termination strengthens type soundness; on the other hand,

as we will discover in the following proof attempt, we cannot prove termination

without appealing to some form of type soundness.

Theorem 9.5 (Termination). If · ⊢ 𝑒 : 𝜏 then 𝑒 ⇓.

Proof attempt. By rule induction on · ⊢ 𝑒 : 𝜏 .

• The var case cannot occur in the empty context.

• Cases

· ⊢ () : unit
unit-intro ,

𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
· ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro :

These are values.

• Case

· ⊢ 𝑒1 : 𝜏1 · ⊢ 𝑒2 : 𝜏2
· ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

×-intro :

We must show (𝑒1, 𝑒2) ⇓, given 𝑒1 ⇓ 𝑣1 and 𝑒2 ⇓ 𝑣2. By the operational

semantics, (𝑒1, 𝑒2) ↦−→∗ (𝑣1, 𝑒2) ↦−→∗ (𝑣1, 𝑣2) and (𝑣1, 𝑣2) val.

• Cases

· ⊢ 𝑒 : 𝜏1 × 𝜏2

· ⊢ fst(𝑒) : 𝜏1
×-elim1 ,

· ⊢ 𝑒 : 𝜏1 × 𝜏2

· ⊢ snd(𝑒) : 𝜏2
×-elim2 :

In the first case we must show fst(𝑒) ⇓ given 𝑒 ⇓. By Lemma 9.4, 𝑒 ⇓
(𝑣1, 𝑣2) where 𝑣1 val and 𝑣2 val. By the operational semantics, fst(𝑒) ↦−→∗

fst((𝑣1, 𝑣2)) ↦−→ 𝑣1. The second case is similar.

• Case

· ⊢ 𝑓 : 𝜏1 → 𝜏2 · ⊢ 𝑒1 : 𝜏1
· ⊢ 𝑓 𝑒1 : 𝜏2

→-elim :
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We must show that 𝑓 𝑒1 ⇓, using the inductive hypotheses that 𝑓 ⇓ and

𝑒1 ⇓ 𝑣1. By Lemma 9.4, 𝑓 ⇓ 𝜆𝑥 : 𝜏1.𝑒2. By the operational semantics,

𝑓 𝑒1 ↦−→∗ (𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→∗ (𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→ 𝑒2 [𝑣1/𝑥], but we don’t
know anything about 𝑒2 [𝑣1/𝑥].

2 Strengthening the IH

Zooming out, the problem with the above proof attempt is that it simply is not

true that whenever 𝑓 and 𝑒1 terminate, then 𝑓 𝑒1 terminates; we also need to know

that the function 𝑓 terminates for every input.

Remark 9.6. In fact, a similar thing happens in the cases for fst and snd even

though the proof goes through: we need to know not only that 𝑒 terminates but

that fst(𝑒) terminates. In a call-by-value language, this follows from the fact that

𝑒 evaluates to a pair because pairs evaluate their arguments. But in a call-by-name

language, the proof attempt also fails for fst and snd.

The core idea of logical relations is to strengthen the inductive hypothesis.

Idea 9.7. Instead of proving that functions terminate, we should prove a strictly

stronger property: that they terminate for every input.

It may seem counterintuitive that proving a stronger theorem will be easier,

but we have seen this before: we were able to prove the substitution lemma for

arbitrary contexts but unable to prove it for contexts of length one. We must prove

a stronger result, but we also get a stronger inductive hypothesis.

It makes sense to ask that terms of type 𝜏1 → 𝜏2 terminate on every possible

input, but what about terms of type 𝜏1×𝜏2 or unit? The concept of “every possible
input” only makes sense for terms of function type.

Idea 9.8. As in Lemma 9.4, the property that we prove well-typed terms satisfy

must be different at every type. For terms of type 𝜏1 → 𝜏2 we will prove that they

terminate for every input, but for terms of type 𝜏1 × 𝜏2 and unit we must prove a

different statement.

Since our termination proof went through for everything except functions,

it is tempting to think that the statement we prove for product and unit types

should just be ordinary termination. Unfortunately, this doesn’t work. What if we

have a pair of functions, then take a projection, then apply it to something? If all

we know is that the pair of functions terminates, then we are back to square one:

𝑝 terminates, so fst(𝑝) terminates, but why should fst(𝑝) 𝑒 terminate?

In other words, the property we prove for terms of type (𝜏1 → 𝜏2) × (𝜏3 → 𝜏4)
must imply that the first projection terminates when applied to a term of type
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𝜏1, and that the second projection terminates when applied to a term of type

𝜏3. Likewise, if we have a term of type 𝜏1 → (𝜏2 → 𝜏3), then not only must it

terminate when applied to a term of type 𝜏1, but the function so obtained must

itself terminate when applied to a term of type 𝜏2.

Idea 9.9. The property that we prove holds for all · ⊢ 𝑒 : 𝜏 must be defined by

structural recursion on 𝜏 , where the case for function types involves applying 𝑒 to

inputs, and the case for product types involves the projections of 𝑒 .

The property in question is called hereditary termination.

Definition 9.10 (Hereditary termination). A closed term · ⊢ 𝑒 tm is hereditarily
terminating at type 𝜏 , or HT𝜏 (𝑒), when:

• If 𝜏 = unit, then 𝑒 ⇓ ().

• If 𝜏 = 𝜏1 → 𝜏2, then 𝑒 ⇓ 𝜆𝑥 : 𝜏1.𝑒2, and for all · ⊢ 𝑒1 : 𝜏1 such that HT𝜏1 (𝑒1),
we have HT𝜏2 (𝑒2 [𝑒1/𝑥]).

• If 𝜏 = 𝜏1 × 𝜏2, then 𝑒 ⇓ (𝑣1, 𝑣2) where 𝑣1 val, 𝑣2 val, HT𝜏1 (𝑣1), and HT𝜏2 (𝑣2).

This property is considerably more complex than termination, but it is straight-

forward to see that if we can prove that all closed, well-typed terms are hereditarily

terminating, then this will imply (1) termination, and (2) type soundness.

Lemma 9.11. If HT𝜏 (𝑒) then 𝑒 ⇓.

Proof. By structural recursion on 𝜏 .

• If 𝜏 = unit, then HTunit(𝑒) means exactly that 𝑒 ⇓ ().

• If 𝜏 = 𝜏1 → 𝜏2, then HT𝜏1→𝜏2 (𝑒) implies in particular that 𝑒 ⇓ 𝜆𝑥 : 𝜏1.𝑒2.

• If 𝜏 = 𝜏1 × 𝜏2, then HT𝜏1×𝜏2 (𝑒) implies in particular that 𝑒 ⇓ (𝑣1, 𝑣2). □

Exercise 9.12. Convince yourself that if we know every · ⊢ 𝑒 : 𝜏 satisfies HT𝜏 (𝑒),
then Lemma 9.4 directly follows. (In fact, we can even remove the hypothesis of

Lemma 9.4 that 𝑒 ⇓ 𝑣 , because 𝑒 would necessarily terminate.)

3 One more thing

We are poised to prove that all closed, well-typed terms are hereditarily terminating

at their type, but the theorem still isn’t general enough! Let’s try proving that the

→-intro rule preserves hereditary termination.
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Theorem 9.13 (Hereditary termination). If · ⊢ 𝑒 : 𝜏 then HT𝜏 (𝑒).

Proof attempt. By rule induction on the typing judgment.

• Case

𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
· ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro :

We must show that HT𝜏1→𝜏2 (𝜆𝑥 : 𝜏1.𝑒2), i.e. that 𝜆𝑥 : 𝜏1.𝑒2 ⇓ 𝜆𝑥 : 𝜏1.𝑒
′
2
and

for all · ⊢ 𝑒1 : 𝜏1 such that HT𝜏1 (𝑒1), we have HT𝜏2 (𝑒′2 [𝑒1/𝑥]). By finality of

values we must have 𝑒2 = 𝑒′
2
, so it remains only to show that for all · ⊢ 𝑒1 : 𝜏1

such that HT𝜏1 (𝑒1), we have HT𝜏2 (𝑒2 [𝑒1/𝑥]).
Since this statement concernsHT𝜏2 for a term involving 𝑒2, wemight imagine

that this should follow from the inductive hypothesis for 𝑒2, but there is no
inductive hypothesis because 𝑒2 isn’t closed!

The solution is to strengthen the inductive hypothesis one final time so that

hereditary termination applies not only to closed terms but also to open terms.

But hereditary termination talks about evaluation, and we can’t evaluate open

terms—so what should the generalization be? In fact, we can read it directly off of

our failed proof attempt.

Idea 9.14. Rather than proving that all closed, well-typed terms are hereditarily ter-

minating, wewill prove that if we take anywell-typed term and substitute hereditar-

ily terminating terms for all of its variables, then the result is hereditarily terminat-

ing. That is, if 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 ⊢ 𝑒 : 𝜏 , then for any · ⊢ 𝑒1 : 𝜏1 satisfyingHT𝜏1 (𝑒1),
. . . , and · ⊢ 𝑒𝑛 : 𝜏𝑛 satisfying HT𝜏𝑛 (𝑒𝑛), we have HT𝜏 (𝑒 [𝑒1/𝑥1] . . . [𝑒𝑛/𝑥𝑛]).

This idea is not as random as it may first appear. First, it strictly generalizes

hereditary termination, because closed terms have no variables to be substituted.

Secondly, the property of an open term that it becomes hereditarily terminating

when we substitute in a hereditarily terminating term is precisely what we need

to push through the →-intro case. Thirdly, if we are looking to describe the

evaluation behavior of an open term, the onlyway that open terms become involved

with evaluation is by substituting for their free variables.

We introduce some notations to make Idea 9.14 more manageable.

Definition 9.15. A well-typed closing substitution, or environment, for a typing
context Γ associates to every 𝑥𝑖 : 𝜏𝑖 in Γ a closed term · ⊢ 𝑒𝑖 : 𝜏𝑖 of the appropriate
type. We write 𝛾 : Γ when 𝛾 is a closing substitution for Γ, and we can define this

by structural recursion on Γ as follows:

• · : ·, and
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• if 𝛾 : Γ and · ⊢ 𝑒 : 𝜏 , then (𝛾, 𝑒/𝑥) : (Γ, 𝑥 : 𝜏).

Concretely, we can think of 𝛾 as an (unordered) list of pairs 𝑒1/𝑥1, 𝑒2/𝑥2, . . . .
When 𝛾 : Γ, the set of variables in Γ must be the same as the set of variables to the

right of / in 𝛾 , and each term’s type must match the corresponding variable in Γ.

Remark 9.16. Although closing substitutions are not terms, the notation 𝛾 : Γ is

chosen intentionally to overlap with the term typing judgment. We can think of the

context 𝑥1 : 𝜏1, . . . , 𝑥𝑛 : 𝜏𝑛 as a single type 𝜏1 × · · · × 𝜏𝑛 , and a closing substitution

for that context as a closed term of that type.

Definition 9.17. Given a term Γ ⊢ 𝑒 : 𝜏 and a closing substitution 𝛾 : Γ for its

context, we can perform a simultaneous substitution 𝑒 [𝛾] of all the terms in 𝛾 for

their corresponding variables. We can define 𝑒 [𝛾] by structural recursion on 𝛾 :

• 𝑒 [·] = 𝑒 , and

• 𝑒 [𝛾, 𝑒′/𝑥] = (𝑒 [𝛾]) [𝑒′/𝑥].

Lemma 9.18 (Simultaneous substitution). If Γ ⊢ 𝑒 : 𝜏 and 𝛾 : Γ, then · ⊢ 𝑒 [𝛾] : 𝜏 .

Proof: by induction on 𝛾 , using the substitution lemma.

Finally, we can define hereditary termination for a closing substitution as

pointwise hereditary termination.

Definition 9.19. A closing substitution 𝛾 : Γ is hereditarily terminating at context
Γ, or HTΓ (𝛾), as follows:

• HT· (·), and

• HTΓ,𝑥 :𝜏 (𝛾, 𝑒/𝑥) if HTΓ (𝛾) and HT𝜏 (𝑒).

4 The fundamental theorem

At long last we are ready to state a theorem that we will be able to prove by rule

induction, namely the statement we described in Idea 9.14 but rephrased using

hereditarily terminating closing substitutions. It is often known grandly as the

fundamental theorem of logical relations.

Theorem 9.20 (Fundamental theorem of logical relations). Suppose Γ ⊢ 𝑒 : 𝜏 and
𝛾 : Γ and HTΓ (𝛾). Then HT𝜏 (𝑒 [𝛾]).

7



Rather than aborting yet another proof attempt, we note at the outset that our

proof will require two straightforward technical lemmas stating that hereditary

termination is closed under forward and backward evaluation. These essentially

follow from the fact that for every 𝜏 , HT𝜏 (𝑒) is defined purely in terms of 𝑒 ⇓ 𝑣 .

Lemma 9.21 (Head expansion). If HT𝜏 (𝑒′) and 𝑒 ↦−→ 𝑒′ then HT𝜏 (𝑒).
Proof. By cases on 𝜏 .

• If 𝜏 = unit, then we know 𝑒′ ⇓ () and 𝑒 ↦−→ 𝑒′ and must show that 𝑒 ⇓ ().
This is immediate by the definition of ⇓.

• If 𝜏 = 𝜏1 → 𝜏2, then we know 𝑒′ ⇓ 𝜆𝑥 : 𝜏1.𝑒2 where 𝑒2 satisfies some property.

But if 𝑒 ↦−→ 𝑒′ then 𝑒 ⇓ 𝜆𝑥 : 𝜏1.𝑒2 for the same 𝑒2.

• If 𝜏 = 𝜏1×𝜏2, then we know 𝑒′ ⇓ (𝑣1, 𝑣2) and 𝑣1 and 𝑣2 satisfy some properties.

But if 𝑒 ↦−→ 𝑒′ then 𝑒 ⇓ (𝑣1, 𝑣2) for the same 𝑣1 and 𝑣2. □

Lemma 9.22 (Head reduction). If HT𝜏 (𝑒) and 𝑒 ↦−→ 𝑒′ then HT𝜏 (𝑒′).
Proof. By cases on 𝜏 .

• If 𝜏 = unit, then we know 𝑒 ⇓ () and 𝑒 ↦−→ 𝑒′, and must show 𝑒′ ⇓ (). By
inversion on 𝑒 ⇓ (), either 𝑒 = () which contradicts 𝑒 ↦−→ 𝑒′ by finality of

values, or 𝑒 ↦−→ 𝑒′′ and 𝑒′′ ↦−→∗ (). By determinacy, 𝑒′ = 𝑒′′, so 𝑒′ ↦−→∗ ()
as required.

• The cases for 𝜏 = 𝜏1 → 𝜏2 and 𝜏 = 𝜏1 × 𝜏2 are analogous. □

Corollary 9.23. If 𝑒 ↦−→∗ 𝑒′ then HT𝜏 (𝑒) ⇐⇒ HT𝜏 (𝑒′).

Proof: induction on ↦−→∗
, using the above lemmas.

Corollary 9.24. If HT𝜏 (𝑒), then 𝑒 ⇓ 𝑣 and HT𝜏 (𝑣).
Proof. Suppose HT𝜏 (𝑒). By Lemma 9.11 we have 𝑒 ⇓ 𝑣 , and by Corollary 9.23 we

have HT𝜏 (𝑣). □

With all the boring lemmas out of the way, let’s prove the fundamental theorem.

Proof of Theorem 9.20. By rule induction on Γ ⊢ 𝑒 : 𝜏 .
• Case

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
var :

We must show that for any 𝛾 : (Γ, 𝑥 : 𝜏) such that HTΓ,𝑥 :𝜏 (𝛾), we have

HT𝜏 (𝑥 [𝛾]). By the definition of HTΓ,𝑥 :𝜏 (𝛾), 𝛾 must be of the form 𝛾 ′, 𝑒/𝑥
where HT𝜏 (𝑒). Since 𝑥 [𝛾 ′, 𝑒/𝑥] = 𝑒 , the case follows immediately from our

hypothesis HT𝜏 (𝑒).
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• Case

Γ ⊢ () : unit
unit-intro :

We must show that for any 𝛾 : Γ such that HTΓ (𝛾), we have HTunit(() [𝛾]).
Since () has no variables, () [𝛾] = (). Expanding the definition of HTunit,

we must show that () ⇓ (), which is immediate.

• Case

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2
Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2

×-intro :

We must show that for any 𝛾 : Γ such thatHTΓ (𝛾),HT𝜏1×𝜏2 ((𝑒1, 𝑒2) [𝛾]). We

have two inductive hypotheses, namely that for any hereditarily terminating

𝛾 ′ we have HT𝜏1 (𝑒1 [𝛾 ′]) and HT𝜏2 (𝑒2 [𝛾 ′]). In particular, by setting 𝛾 ′ = 𝛾

and Corollary 9.24, we have 𝑒1 [𝛾] ⇓ 𝑣1, HT𝜏1 (𝑣1), 𝑒2 [𝛾] ⇓ 𝑣2, and HT𝜏2 (𝑣2).
By the definition of substitution, (𝑒1, 𝑒2) [𝛾] = (𝑒1 [𝛾], 𝑒2 [𝛾]). Expanding

the definition of HT𝜏1×𝜏2 (𝑒1 [𝛾], 𝑒2 [𝛾]), we must prove that (𝑒1 [𝛾], 𝑒2 [𝛾]) ⇓
(𝑣 ′

1
, 𝑣 ′

2
) where 𝑣 ′

1
val, 𝑣 ′

2
val, HT𝜏1 (𝑣 ′1), and HT𝜏2 (𝑣 ′2). This follows from the

operational semantics and our inductive hypotheses: (𝑒1 [𝛾], 𝑒2 [𝛾]) ↦−→∗

(𝑣1, 𝑒2 [𝛾]) ↦−→∗ (𝑣1, 𝑣2) and (𝑣1, 𝑣2) val.

• Case

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ fst(𝑒) : 𝜏1
×-elim1 :

We must show that for any 𝛾 : Γ such that HTΓ (𝛾), HT𝜏1 (fst(𝑒) [𝛾]). Our
IH is that for any hereditarily terminating 𝛾 ′,HT𝜏1×𝜏2 (𝑒 [𝛾 ′]). Setting 𝛾 ′ = 𝛾 ,

we conclude that 𝑒 [𝛾] ⇓ (𝑣1, 𝑣2) where 𝑣1 val and HT𝜏1 (𝑣1). The result

follows by fst(𝑒) [𝛾] = fst(𝑒 [𝛾]) ↦−→∗ fst((𝑣1, 𝑣2)) ↦−→ 𝑣1, HT𝜏1 (𝑣1), and
Corollary 9.23.

• Case

Γ ⊢ 𝑒 : 𝜏1 × 𝜏2

Γ ⊢ snd(𝑒) : 𝜏2
×-elim2 :

Analogous to previous case.

• Case

Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro :

Wemust show that for any𝛾 : Γ such thatHTΓ (𝛾),HT𝜏1→𝜏2 ((𝜆𝑥 : 𝜏1.𝑒2) [𝛾]).
Our IH is that for any 𝛾 ′ : (Γ, 𝑥 : 𝜏1) such that HTΓ,𝑥 :𝜏1 (𝛾 ′), HT𝜏2 (𝑒2 [𝛾 ′]).
By the definition of substitution, (𝜆𝑥 : 𝜏1.𝑒2) [𝛾] = 𝜆𝑥 : 𝜏1.𝑒2 [𝛾]. Expanding
the definition of HT𝜏1→𝜏2 , we must show that 𝜆𝑥 : 𝜏1.𝑒2 [𝛾] ⇓ 𝜆𝑥 : 𝜏1.𝑒2 [𝛾]
(which is immediate), and that for all · ⊢ 𝑒1 : 𝜏1 such that HT𝜏1 (𝑒1), we
have HT𝜏2 (𝑒2 [𝛾] [𝑒1/𝑥]). Now suppose indeed that · ⊢ 𝑒1 : 𝜏1 and HT𝜏1 (𝑒1).
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We can set 𝛾 ′ in our IH to be 𝛾, 𝑒1/𝑥 because HTΓ,𝑥 :𝜏1 (𝛾, 𝑒1/𝑥). Because

𝑒2 [𝛾, 𝑒1/𝑥] = 𝑒2 [𝛾] [𝑒1/𝑥], the result follows immediately from the IH.

• Case

Γ ⊢ 𝑓 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒1 : 𝜏1
Γ ⊢ 𝑓 𝑒1 : 𝜏2

→-elim :

We must show that for any 𝛾 : Γ such that HTΓ (𝛾), HT𝜏2 ((𝑓 𝑒1) [𝛾]).
Our IHs state that for any hereditarily terminating 𝛾 ′, HT𝜏1→𝜏2 (𝑓 [𝛾 ′]) and
HT𝜏1 (𝑒1 [𝛾 ′]). Setting 𝛾 ′ = 𝛾 , our second IH and Corollary 9.24 give us

𝑒1 [𝛾] ⇓ 𝑣1 and HT𝜏1 (𝑣1); our first IH gives us 𝑓 [𝛾] ⇓ 𝜆𝑥 : 𝜏1.𝑒2 and, plug-

ging in 𝑣1, HT𝜏2 (𝑒2 [𝑣1/𝑥]). The result then follows from Corollary 9.23 and

(𝑓 𝑒1) [𝛾] = 𝑓 [𝛾] 𝑒1 [𝛾] ↦−→∗ (𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 [𝛾] ↦−→∗ (𝜆𝑥 : 𝜏1.𝑒2) 𝑣1 ↦−→
𝑒2 [𝑣1/𝑥]. □

Termination (Theorem 9.5) is an immediate corollary of Theorem 9.20.

Proof of Theorem 9.5. Suppose that · ⊢ 𝑒 : 𝜏 . By Theorem 9.20, · : ·, andHT· (·), we
have HT𝜏 (𝑒). By Lemma 9.11, this implies 𝑒 ⇓. □

Remark 9.25. Some authors separate each of the cases of the proof of the funda-

mental theorem into separate lemmas called compatibility lemmas.

5 What’s a logical relation?

The hereditary termination predicateHT𝜏 (−) is a prototypical example of a unary
logical relation (or logical predicate). But what exactly is a unary logical relation?

Likemany other terms in this class (e.g., operational semantics) there is not an exact

definition, but unary logical relations generally have the following characteristics:

• The logical predicate itself is a family of type-indexed predicates over closed

terms, defined by structural recursion on types.

• The logical predicate implies the property we are trying to prove, but unlike

the property of interest, can be proven by rule induction.

• The definition of the logical predicate at each type reflects the type structure

itself (this is the logical part) and is designed to be closed under elimination

principles, perhaps unlike the property we are trying to prove.

• The logical predicate is defined in terms of evaluation behavior and is there-

fore closed under head expansion (and sometimes head reduction), which is

used in the proof of the fundamental theorem.
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• We extend the logical predicate to open terms by quantifying over all closing

substitutions that pointwise satisfy the logical predicate.

Binary logical relations satisfy the same properties, except that they are binary

relations rather than unary relations (predicates). Our next example of a logical

relation will be binary.

Remark 9.26. There are several ways to define hereditary termination for the STLC.
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