
Lecture Notes 10

Observational Equivalence

Carlo Angiuli

B522: PL Foundations

April 7, 2025

We now return to the question of when two programs, or more generally

two terms, should be considered equal. We have already seen that the relation

of evaluating to identical values is rather too strict. For one thing, it fails to

equate functions that produce the same output on every input (which we called

extensionally equal functions in the lecture on type isomorphism). In addition, this

relation does not give us any insight into the equality of open terms.

In this lecture we will develop the basic theory of observational equivalence,
also known as (Morris-style [Mor69]) contextual equivalence or extensional equiva-
lence, one of the standard notions of program fragment equivalence considered

in programming language theory. We will then discuss the pros and cons of

observational equivalence, and introduce a more tractable characterization of

observational equivalence known as logical equivalence.
Observational equivalence for System T and PCF are discussed in Chapters 46

and 47 of Harper [Har16] respectively.

1 Desiderata

Let’s take a step back and think about the properties that equality should satisfy.

• It should be a binary relation on two terms of the same type.

• It should be an equivalence relation: reflexive (every term should be equal to

itself), symmetric (if 𝑒 = 𝑒′ then 𝑒′ = 𝑒), and transitive (if 𝑒 = 𝑒′ and 𝑒′ = 𝑒′′

then 𝑒 = 𝑒′′).

• It should also be a congruence, i.e., it should be preserved by all term formers.

For example, if 𝑒 = 𝑒′ then we should also have fst(𝑒) = fst(𝑒′), 𝑓 𝑒 = 𝑓 𝑒′,
𝜆𝑥 : 𝜏 .𝑒 = 𝜆𝑥 : 𝜏 .𝑒′, etc.

1

These are the basic properties of any equality relation; they allow us to chain

together equalities and “replace equals by equals” anywhere inside a larger term

anywhere inside a larger term. In particular, transitivity and congruence combine

to give us more general equational reasoning: if 𝑓 = 𝑓 ′ and 𝑒 = 𝑒′ then we have

𝑓 𝑒 = 𝑓 ′ 𝑒′ by 𝑓 𝑒 = 𝑓 𝑒′ = 𝑓 ′ 𝑒′.
The last example of congruence, that 𝜆 should preserve equality, implies that

• Equality should be defined not only for closed terms but also open terms.

That is, for every Γ, every 𝜏 , and every pair of terms Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 , we
should have an equality relation Γ ⊢ 𝑒 = 𝑒′ : 𝜏 , and if (for example) Γ, 𝑥 : 𝜏1 ⊢ 𝑒 =
𝑒′ : 𝜏2 then Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒 = 𝜆𝑥 : 𝜏1.𝑒

′
: 𝜏1 → 𝜏2.

Remark 10.1. In some sense one really has a separate equivalence relation on

terms for every Γ and 𝜏 , although congruence is a very strong coherence condition

between these relations.

So far our considerations have been very syntactic, referencing the type system

but not the operational semantics. Taking evaluation into account,

• Equality of closed terms should contain evaluation: if · ⊢ 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′,
then · ⊢ 𝑒 = 𝑒′ : 𝜏 .

• Equality (of both open terms and closed terms) should be somehow defined

in terms of the operational semantics, and evaluation should not be able to

distinguish equal terms.

The latter point is crucial because the point of writing programs is to run them, and

the point of reasoning about programs is to better understand what will happen

when you run them. Just as the type system gives us some guarantees about

the runtime behavior of programs, we would like equality to give us some fairly

strong guarantees about the “sameness” of the results obtained from running each

program. It is also somewhat tricky, though, because evaluation is only defined

for closed terms and equality must be defined for open terms as well.

These final considerations are less mandatory from a theoretical perspective

but are generally desirable for other reasons:

• At function types, it should contain extensional equality. (Otherwise it will

not be very useful).

• It should generalize all of the principal reductions to open terms (i.e., it

should contain 𝛽-equivalence). For example, if Γ ⊢ 𝑒1 : 𝜏1 and Γ ⊢ 𝑒2 : 𝜏2 then
Γ ⊢ fst((𝑒1, 𝑒2)) = 𝑒1 : 𝜏1. (This lets us perform various simplifications.)

• It should be “canonical”; the “best” equality relation in some sense.

2

2 Observations

How can we transform evaluation from a deterministic relation on closed terms

to a congruence relation on open terms? Given our experience with closing

substitutions in the definition of hereditary termination, we might imagine saying

that two open terms are equal if for all well-typed terms that we substitute for

their variables, they evaluate to the same value. There are a few problems with

this definition, but perhaps the easiest one to point out is that it does not equate

extensionally equal functions such as 𝜆𝑥 : 𝜏1×𝜏2.𝑥 and 𝜆𝑥 : 𝜏1×𝜏2.(fst(𝑥), snd(𝑥)).
In fact, the entire fact that functions evaluate to 𝜆 terms is a technical sim-

plification of structural operational semantics. In Racket, the REPL reports the

value of functions as #<procedure>, not (lambda ...); even the interpreters in

C311/B521 evaluate functions to closures. So our first step toward extensional

equality is to ignore that we can “look under the hood” of function values.

We thus draw a distinction between program outcomes that are observable and
those that are not. Observable values include “data” such as unit, booleans, natural
numbers, or lists of data. In PCF, it is also observable whether or not a program

terminates. For each of these observations it should be quite clear-cut—regardless

of how we implement our language—whether two observations are the same or

different. (And all implementations should agree!) On the other hand, 𝜆s are the

prototypical example of non-observable values.
We will define observational equivalence as follows. First, we pick a type and a

notion of observation for (closed) programs of that type. For example, we might say

that bool is the observable type, with the two possible observations of a program

· ⊢ 𝑒 : bool being evaluating to true and evaluating to false. In that case, we

only permit ourselves to observe the behavior of closed terms of type bool.
For terms of any other type or in any other typing context, we consider all

possible surrounding programs into which that term could fit. For example, given

the term 𝑥 : nat ⊢ plus 𝑥 : nat → natwe can imagine many ways of “completing”

it into a program of type bool:

zero? ((𝜆𝑥 : nat.plus 𝑥 𝑥) zero)
zero? (casenat suc(zero) [zero → zero] [suc(𝑥) → plus 𝑥 suc(zero)])

(𝜆𝑓 : nat → nat.true) (𝜆𝑥 : nat.plus 𝑥)
...

Note that some of these evaluate to true, and others to false; some of these “use”

plus 𝑥 in an essential way, whereas in others we never evaluate plus at all.
For any pair of terms Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 , we say that they are observa-

tionally equivalent if there is no surrounding context that distinguishes them, that

3

is, if there is no single way to “complete” them into programs of type bool that
causes 𝑒 to be completed into a program computing true and 𝑒′ into a program
computing false. If we think of each of these contexts as an “experiment” that

we can run on 𝑒 or 𝑒′, then observationally equivalent terms are those that no

experiment can distinguish.

We will make this more precise momentarily, but let us first discuss choosing

a notion of observation. Besides the programming language itself, the notion of

observation is the only “input” to the definition of observational equivalence, so

one might think that it must be chosen very carefully.

In fact, most choices turn out to produce identical results. Suppose that we

choose nat as our observable type instead of bool. If two programs compute

different natural numbers, say zero and suc(zero), then it is easy to surround

them in a context that will cause them to compute two different booleans (e.g.,

testing whether they are zero?). On the other hand, if there is no surrounding

context that causes 𝑒 and 𝑒′ to produce different numbers, then there also cannot

be any surrounding context in which they produce different booleans: for if there

were, it would give us a way to distinguish 𝑒 and 𝑒′ numerically as well (e.g.,

if(−, zero, suc(zero))).
In languages with nontermination, such as PCF, it is common to choose ter-

mination (at any type, such as unit) as the observation. For one, it is necessary
in any case to include nontermination as one of the possibilities: two programs

of type bool produce the same result if both evaluate to true, both to false, or
both diverge. And as above, terms that are (in)distinguishable with respect to one

of these observations are also (in)distinguishable with respect to the other.

Remark 10.2. The foregoing discussion hints at one downside to observational

equivalence: it is very sensitive to what features are in one’s language. Many

languages have an extremely fine observational equivalence because of the ability

to compare functions for equality, measure how long a computation takes, etc.

In the other direction, if we forget to include if in our language, then true and
false may inadvertently become observationally equivalent with respect to nat
observations.

We will now carefully define observational equivalence for the STLC, or at

least a variation on it. We cannot use the STLC itself because it does not have

any suitable notion of observation: the only data is unit, and there is only one

observable outcome at unit, namely terminating with value ()! (If these are our
observations, then all terms are observationally equivalent.)

We thereforemake the simplest possible change to the STLC, which is to replace

unit by a type that has two different values. We call it the type of “answers” and
call its two values yes and no. The rules are as follows:

4

Types 𝜏 ::=
...

...
...

ans ans answer type

Terms 𝑒 ::=
...

...
...

yes yes yes answer

no no no answer

. . .
yes val no val

. . .
Γ ⊢ yes : ans Γ ⊢ no : ans

Remark 10.3. An alternative would be to add booleans to the STLC, but those are

more complicated because of if. Although ans is rather useless for programming—

we cannot actually use its terms in any way—it is the simplest addition that gives

us the ability to distinguish, for example, 𝜆𝑥 .𝜆𝑦.𝑥 and 𝜆𝑥 .𝜆𝑦.𝑦.

3 Observational equivalence for STLC++

Definition 10.4. A term context (or expression context) C, not to be confused

with a typing context Γ, is a term with one hole ◦ in it. We define term contexts

inductively as follows:

Term contexts C ::= ◦ | 𝜆𝑥 : 𝜏 .C | C 𝑒 | 𝑒 C
| (C, 𝑒) | (𝑒, C) | fst(C) | snd(C)

An example of a term context is fst(yes, (𝜆𝑥 : ans.(𝑥, ◦))). Term contexts can

be seen as a generalization of evaluation contexts where the hole can be anywhere

whatsoever, including under binders.

Definition 10.5. For any term context C and term 𝑒 , we define the instantiation

5

of C with 𝑒 , written C{𝑒}, by structural recursion:

◦{𝑒} := 𝑒

(𝜆𝑥 : 𝜏 .C){𝑒} := 𝜆𝑥 : 𝜏 .C{𝑒}
(C 𝑒′){𝑒} := C{𝑒} 𝑒′

(𝑒′ C){𝑒} := 𝑒′ C{𝑒}
(C, 𝑒′){𝑒} := (C{𝑒}, 𝑒′)
(𝑒′, C){𝑒} := (𝑒′, C{𝑒})
fst(C){𝑒} := fst(C{𝑒})
snd(C){𝑒} := snd(C{𝑒})

Note that term context instantiation captures variables in 𝑒 . For example, if

C = 𝜆𝑥 : 𝜏 .◦ and 𝑒 = 𝑥 , then instantiating C{𝑒} = 𝜆𝑥 : 𝜏 .𝑥 changes 𝑥 from a free

variable to a bound variable. For this reason, context instantiation is not a special

case of substitution; we cannot treat term contexts as terms with a distinguished

“hole” variable and instantiation as substitution for that variable.

Variable capture is intentional for this definition, because it accurately ex-

presses the idea that we want to consider “any surrounding context,” which in the

case of variables includes “any binding site.”

Definition 10.6 (Term context typing). For typing contexts Γ, Γ′ and types 𝜏, 𝜏 ′

we define the judgment C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏 ′) inductively as follows:

◦ : (Γ ▷ 𝜏) ⇝ (Γ ▷ 𝜏)
C : (Γ ▷ 𝜏) ⇝ (Γ′, 𝑥 : 𝜏1 ▷ 𝜏2)

𝜆𝑥 : 𝜏1.C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 → 𝜏2)

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 → 𝜏2) Γ′ ⊢ 𝑒1 : 𝜏1
C 𝑒1 : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏2)

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1) Γ′ ⊢ 𝑓 : 𝜏1 → 𝜏2

𝑓 C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏2)

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1) Γ′ ⊢ 𝑒2 : 𝜏2
(C, 𝑒2) : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 × 𝜏2)

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏2) Γ′ ⊢ 𝑒1 : 𝜏1
(𝑒1, C) : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 × 𝜏2)

6

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 × 𝜏2)
fst(C) : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1)

C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏1 × 𝜏2)
snd(C) : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏2)

Lemma 10.7. If C : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏 ′) and Γ ⊢ 𝑒 : 𝜏 then Γ′ ⊢ C{𝑒} : 𝜏 ′.

Given two closed programs of observable type, the relation of “having the

same observable outcome” is often known as Kleene equivalence.

Definition 10.8 (Kleene equivalence). Given two programs · ⊢ 𝑒 : ans and

· ⊢ 𝑒′ : ans, we say that 𝑒 and 𝑒′ are Kleene equivalent, written 𝑒 ≃ 𝑒′, if either
𝑒 ⇓ yes and 𝑒′ ⇓ yes, or 𝑒 ⇓ no and 𝑒′ ⇓ no.

Kleene equivalence only applies to closed programs of type ans so it is not

a congruence and lacks various other desirable properties, but it is reflexive,

symmetric, transitive, and closed under head expansion and head reduction.

Definition 10.9 (Observational equivalence). Given two terms Γ ⊢ 𝑒 : 𝜏 and

Γ ⊢ 𝑒′ : 𝜏 , we say that 𝑒 and 𝑒′ are observationally equivalent, Γ ⊢ 𝑒 � 𝑒′ : 𝜏 , if for
every C : (Γ ▷ 𝜏) ⇝ (· ▷ ans) we have C{𝑒} ≃ C{𝑒′}.

Observational equivalence is also reflexive, symmetric, and transitive, but

unlike Kleene equivalence, it is defined for every Γ and 𝜏 .

Lemma 10.10. Observational equivalence is a congruence: that is, it is an equiv-
alence relation, and if Γ ⊢ 𝑒 � 𝑒′ : 𝜏 and D : (Γ ▷ 𝜏) ⇝ (Γ′ ▷ 𝜏 ′), then
Γ′ ⊢ D{𝑒} � D{𝑒′} : 𝜏 ′.

Lemma 10.11. Observational equivalence is consistent with Kleene equivalence: if
· ⊢ 𝑒 � 𝑒′ : ans then 𝑒 ≃ 𝑒′.

computational adequacy

Lemma 10.11 implies in particular that observational equivalence does not

equate all terms; if it did then it would equate yes and no, but these are clearly
not Kleene equivalent.

All proper notions of equality should be consistent congruences: they should

be preserved by every term former and should generalize Kleene equivalence. It

turns out that observational equivalence is the coarsest notion of equality—the

one that equates the most terms—in the sense that whenever there is a consistent

congruence that relates 𝑒 and 𝑒′, then 𝑒 and 𝑒′ are also observationally equivalent.

Theorem 10.12. Observational equivalence is the coarsest consistent congruence.

7

Proof. It is a consistent congruence by Lemmas 10.10 and 10.11. Now suppose that

𝑅 is a consistent congruence, and that Γ ⊢ 𝑒 𝑅 𝑒′ : 𝜏 . To see that Γ ⊢ 𝑒 � 𝑒′ : 𝜏 ,
we must show that for all C : (Γ ▷ 𝜏) ⇝ (· ▷ ans) we have C{𝑒} ≃ C{𝑒′}.
But because 𝑅 is a congruence, we have · ⊢ C{𝑒} 𝑅 C{𝑒′} : 𝜏 , and because 𝑅 is

consistent, this implies C{𝑒} ≃ C{𝑒′}. □

That said, there are reasons to consider other consistent congruences, e.g.

decidability. Discuss “intensional” equality.

Exercise 10.13. Show that · ⊢ yes � no : ans.

Exercise 10.14. Show that 𝑥 : ans, 𝑦 : ans ⊢ 𝑥 � 𝑦 : ans.

The problem with observational equivalence is that it is very difficult to estab-

lish that two terms are observationally equivalent. Imagine trying to show that

· ⊢ fst((yes, no)) � yes : ans. These are obviously Kleene equivalent for C = ◦,
but even though the left-hand side evaluates in one step to yes, it is not clear how
to argue that every context will treat them equally. For example, it’s not true that

every context evaluates its hole, nor is it true that every program containing one

of these terms will evaluate to yes. To get a handle on observational equivalence,

we will need to turn to—that’s right—logical relations.

4 Logical equivalence

The key to analyzing observational equivalence is to consider all the ways in which

a program may “use” a subterm Γ ⊢ 𝑒 : 𝜏 . Many uses are “passive,” shuffling 𝑒

around by pairing it, applying a function to it, etc. These passive uses are equally

possible for terms of any type. But then there are the “active” uses of a term, which

depend on its type: projecting from a pair, applying a function to an argument, etc.

Although passive uses can result in active uses, it turns out (perhaps intuitively)

that observational equivalence can be reduced to considering only the active uses.

discuss CIU-equivalence

Definition 10.15 (Logical equivalence). The closed terms · ⊢ 𝑒 : 𝜏 and · ⊢ 𝑒′ : 𝜏
are logically equivalent at type 𝜏 , or 𝑒 ∼ 𝑒′ : 𝜏 , when:

• 𝑒 ∼ 𝑒′ : ans if 𝑒 ≃ 𝑒′,

• 𝑒 ∼ 𝑒′ : 𝜏1 × 𝜏2 if fst(𝑒) ∼ fst(𝑒′) : 𝜏1 and snd(𝑒) ∼ snd(𝑒′) : 𝜏2, and

• 𝑒 ∼ 𝑒′ : 𝜏1 → 𝜏2 if for all 𝑒1 ∼ 𝑒′
1
: 𝜏1 we have 𝑒 𝑒1 ∼ 𝑒′ 𝑒′

1
: 𝜏2.

8

We extend logical equivalence to open terms by quantifying over pointwise

logically equivalent closing substitutions.

Definition 10.16. A pair of closing substitutions 𝛾 : Γ and 𝛾 ′ : Γ are logically
equivalent at context Γ, or 𝛾 ∼ 𝛾 ′ : Γ, when:

• · ∼ · : ·, and

• (𝛾, 𝑒/𝑥) ∼ (𝛾 ′, 𝑒′/𝑥) : (Γ, 𝑥 : 𝜏) if 𝛾 ∼ 𝛾 ′ : Γ and 𝑒 ∼ 𝑒′ : 𝜏 .

Definition 10.17. The terms Γ ⊢ 𝑒 : 𝜏 and Γ ⊢ 𝑒′ : 𝜏 are (open) logically equivalent,
or Γ ⊢ 𝑒 ∼ 𝑒′ : 𝜏 , if for all 𝛾 ∼ 𝛾 ′ : Γ we have 𝑒 [𝛾] ∼ 𝑒′ [𝛾 ′] : 𝜏 .

We can use a binary logical relations argument to show that open logical

equivalence coincides with observational equivalence. (We will see a version of

this argument in a future lecture.)

Lemma 10.18 (Head expansion). If 𝑒 ∼ 𝑒′ : 𝜏 , 𝑑 ↦−→∗ 𝑒 , and 𝑑 ′ ↦−→∗ 𝑒′, then
𝑑 ∼ 𝑑 ′ : 𝜏 .

Theorem 10.19. Open logical equivalence is the same as observational equivalence:
Γ ⊢ 𝑒 ∼ 𝑒′ : 𝜏 if and only if Γ ⊢ 𝑒 � 𝑒′ : 𝜏 .

Strangely, the fundamental theorem of logical relations here is the statement

that logical equivalence is reflexive: that for any · ⊢ 𝑒 : 𝜏 , we have 𝑒 ∼ 𝑒 : 𝜏 . Or

maybe it is not so surprising:

Corollary 10.20 (Termination for observables). If · ⊢ 𝑒 : ans then either 𝑒 ⇓ yes
or 𝑒 ⇓ no.

Proof. It is easy to see that observational equivalence is reflexive, so · ⊢ 𝑒 � 𝑒 : ans.
By Theorem 10.19, · ⊢ 𝑒 ∼ 𝑒 : ans; unfolding the definition of logical equivalence,

we have 𝑒 ∼ 𝑒 : ans and thus 𝑒 ≃ 𝑒 , which means that either 𝑒 ⇓ yes or 𝑒 ⇓ no. □

Corollary 10.21 (Termination). If · ⊢ 𝑒 : 𝜏 then 𝑒 ⇓.

Proof. Consider the term · ⊢ (𝜆𝑥 : 𝜏 .yes) 𝑒 : ans. By Corollary 10.20 we know that

(𝜆𝑥 : 𝜏 .yes) 𝑒 ⇓, but by the operational semantics this is only possible if 𝑒 ⇓. □

5 Reasoning with logical equivalence

Lemma 10.22. We have · ⊢ fst((yes, no)) � yes : ans.

Proof. It suffices to show · ⊢ fst((yes, no)) ∼ yes : ans, and hence to show that

fst((yes, no)) ≃ yes, which is immediate. □

9

Lemma 10.23 (Head reduction). If 𝑑 ∼ 𝑑 ′ : 𝜏 , 𝑑 ↦−→∗ 𝑒 , and 𝑑 ′ ↦−→∗ 𝑒′, then
𝑒 ∼ 𝑒′ : 𝜏 .

Lemma10.24. For any Γ ⊢ 𝑒1 : 𝜏1 and Γ ⊢ 𝑒2 : 𝜏2, we have Γ ⊢ fst((𝑒1, 𝑒2)) � 𝑒1 : 𝜏1
and Γ ⊢ snd((𝑒1, 𝑒2)) � 𝑒2 : 𝜏2.

Proof. We focus on the first claim; the second follows similarly. By Theorem 10.19

it suffices to show that for all 𝛾 ∼ 𝛾 ′ : Γ, fst((𝑒1 [𝛾], 𝑒2 [𝛾])) ∼ 𝑒1 [𝛾 ′] : 𝜏1. By

termination and substitution we have 𝑒1 [𝛾] ⇓ 𝑣1, 𝑒1 [𝛾 ′] ⇓ 𝑣 ′
1
, and 𝑒2 [𝛾] ⇓ 𝑣2; by

the operational semantics, we have fst((𝑒1 [𝛾], 𝑒2 [𝛾])) ⇓ 𝑣1 and 𝑒1 [𝛾 ′] ⇓ 𝑣 ′
1
.

By the reflexivity of open logical equivalence, we have 𝑒1 [𝛾] ∼ 𝑒1 [𝛾 ′] : 𝜏1, and
by head reduction we have 𝑣1 ∼ 𝑣 ′

1
: 𝜏1. The result follows by head expansion. □

Lemma 10.25. For any Γ ⊢ 𝑒 : 𝜏1 × 𝜏2, we have Γ ⊢ 𝑒 � (fst(𝑒), snd(𝑒)) : 𝜏1 × 𝜏2.

Proof. By Theorem 10.19 twice, it suffices to show that for all 𝛾 ∼ 𝛾 ′ : Γ,

· ⊢ fst(𝑒 [𝛾]) � fst((fst(𝑒 [𝛾 ′]), snd(𝑒 [𝛾 ′]))) : 𝜏1
· ⊢ snd(𝑒 [𝛾]) � snd((fst(𝑒 [𝛾 ′]), snd(𝑒 [𝛾 ′]))) : 𝜏2

By the previous lemma, · ⊢ fst((fst(𝑒 [𝛾 ′]), snd(𝑒 [𝛾 ′]))) � fst(𝑒 [𝛾 ′]) : 𝜏1;
by transitivity it suffices to show that · ⊢ fst(𝑒 [𝛾]) � fst(𝑒 [𝛾 ′]) : 𝜏1, which

follows from reflexivity of open logical equivalence. The other case is similar. □

extensional equality; beta and eta for function types; counting functions

References

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.

doi: 10.1017/CBO9781316576892.

[Mor69] James Hiram Morris Jr. “Lambda-calculus models of programming

languages”. PhD thesis. Massachusetts Institute of Technology, 1969.

url: http://hdl.handle.net/1721.1/64850.

10

https://doi.org/10.1017/CBO9781316576892
http://hdl.handle.net/1721.1/64850

	10 Observational Equivalence
	Desiderata
	Observations
	Observational equivalence for STLC++
	Logical equivalence
	Reasoning with logical equivalence

