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these notes are a bit short on explanations...

In this lecture, we will discuss System F [Gir72; Rey74], also known as the

polymorphic 𝜆-calculus or the second-order 𝜆-calculus, a famous core calculus that

goes beyond “simple” types by introducing universal and existential quantification

to our syntax of types (or propositions, via Curry–Howard). These quantifiers

extend the simply-typed 𝜆-calculus with two important type-based abstraction

mechanisms, namely parametric polymorphism and abstract types.
System F and abstract types are covered in Chapters 16 and 17 of Harper

[Har16] respectively. Students may also wish to consult Sections 4 and 5 of Lau

Skorstengaard’s notes from Amal Ahmed’s OPLSS lectures on logical relations.

For those who wish to dig deeper, the seminal research papers on these topics are

surprisingly accessible:

• “Types, Abstraction and Parametric Polymorphism” by Reynolds [Rey83]

• “Theorems for Free!” by Wadler [Wad89]

• “Representation Independence and Data Abstraction” by Mitchell [Mit86]

• “Abstract types have existential type” by Mitchell and Plotkin [MP88]
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1 System F

In our lecture on type isomorphisms we talked about “the identity function I,” but
the STLC actually has many different identity functions, one for every type:

· ⊢ 𝜆𝑥 : unit.𝑥 : unit → unit

· ⊢ 𝜆𝑥 : bool.𝑥 : bool → bool

...

The STLC does not let us use a single function at all of these types; remember,

it has uniqueness of types! System F also has uniqueness of types, but what it adds

to the STLC is the ability to express that the identity function 𝜆𝑥 : 𝛼.𝑥 has type

𝛼 → 𝛼 generically for any type 𝛼 , by giving it the polymorphic type ∀𝛼.𝛼 → 𝛼 .

This polymorphic type tells us that we can instantiate the 𝛼 in the function’s type

with any concrete type of our choice, such as unit or bool.
This is call-by-name System F:

Syntax:

Types 𝜏 ::= arr(𝜏1, 𝜏2) 𝜏1 → 𝜏2 function type

all(𝛼.𝜏) ∀𝛼.𝜏 polymorphic type

Terms 𝑒 ::= lambda(𝜏, 𝑥 .𝑒) 𝜆𝑥 : 𝜏 .𝑒 𝜆-abstraction

app(𝑒1, 𝑒2) 𝑒1 𝑒2 application

Lambda(𝛼.𝑒) Λ𝛼.𝑒 type abstraction

App(𝑒, 𝜏) 𝑒@𝜏 type application

The Δ ⊢ 𝜏 ty judgment:

Δ, 𝛼 ty ⊢ 𝛼 ty

Δ ⊢ 𝜏1 ty Δ ⊢ 𝜏2 ty
Δ ⊢ 𝜏1 → 𝜏2 ty

Δ, 𝛼 ty ⊢ 𝜏 ty
Δ ⊢ ∀𝛼.𝜏 ty

Since terms can now contain type variables, the typing judgment must be

indexed by both a type variable context Δ and a term variable context Γ, where
the types in Γ must be well-formed with respect to the context Δ.

The Δ; Γ ⊢ 𝑒 : 𝜏 judgment:

Δ; Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏
var

Δ ⊢ 𝜏1 ty Δ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 : 𝜏2
Δ; Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 : 𝜏1 → 𝜏2

→-intro

Δ; Γ ⊢ 𝑓 : 𝜏1 → 𝜏2 Δ; Γ ⊢ 𝑒1 : 𝜏1
Δ; Γ ⊢ 𝑓 𝑒1 : 𝜏2

→-elim

Δ, 𝛼 ty; Γ ⊢ 𝑒 : 𝜏
Δ; Γ ⊢ Λ𝛼.𝑒 : ∀𝛼.𝜏

∀-intro
Δ; Γ ⊢ 𝑒 : ∀𝛼.𝜏 Δ ⊢ 𝜏 ′ ty

Δ; Γ ⊢ 𝑒@𝜏 ′ : 𝜏 [𝜏 ′/𝛼]
∀-elim
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Remark 11.1. Our conventions for judgments hide an implicit side condition of

the ∀-intro rule: it can only be applied when the context Γ is well-formed in Δ,
i.e., when 𝛼 does not occur free in Γ.

The 𝑣 val judgment:

𝜆𝑥 : 𝜏 .𝑒 val Λ𝛼.𝑒 val

The 𝑒 ↦−→ 𝑒′ judgment:

𝑓 ↦−→ 𝑓 ′

𝑓 𝑒1 ↦−→ 𝑓 ′ 𝑒1 (𝜆𝑥 : 𝜏1.𝑒2) 𝑒1 ↦−→ 𝑒2 [𝑒1/𝑥]

𝑒 ↦−→ 𝑒′

𝑒@𝜏 ↦−→ 𝑒′@𝜏 (Λ𝛼.𝑒)@𝜏 ↦−→ 𝑒 [𝜏/𝛼]

Example 11.2. Returning to the polymorphic identity function, we define:

I : ∀𝛼.𝛼 → 𝛼

I := Λ𝛼.𝜆𝑥 : 𝛼.𝑥

Then I@unit : unit → unit and I@bool : bool → bool and even

I@(∀𝛼.𝛼 → 𝛼) : (∀𝛼.𝛼 → 𝛼) → (∀𝛼.𝛼 → 𝛼)

The ability to use a single piece of code at multiple types is called polymorphism.

System F supports a specific kind of polymorphism called parametric polymorphism,

in which polymorphic terms must behave uniformly at every type. For example, a

term of type ∀𝛼.𝛼 → 𝛼 is not simply a term that happens to work at type 𝜏 → 𝜏

for any 𝜏 ; it has a single definition that is uniform or generic in the type 𝛼 .

In contrast, ad hoc polymorphism refers to terms that are available at every

type but may be defined differently at each one. For example, many languages

have a + function which can operate on any type, but given two numbers performs

numerical addition, given two strings performs string concatenation, etc. Similarly,

equal? compares numbers for numerical equality, lists for structural equality,

functions for pointer equality, etc.

In object-oriented languages, mechanisms for parametric polymorphism are

often called generics and ad hoc polymorphism is often called operator overloading.

Remark 11.3.
type application is weird, usually it’s inferred
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Remark 11.4. The notation ∀makes good sense from the type system perspective:

a term with type ∀𝛼.𝛼 → 𝛼 has type 𝛼 → 𝛼 “for all” types 𝛼 . In addition, the

typing rules extend the Curry–Howard correspondence to universal quantification.

In logic, to prove (introduce) a ∀ statement, one must construct a proof of that

statement for an arbitrary (variable) term; to use (eliminate) a ∀ statement, one

may instantiate the quantified variable with any term whatsoever.

1.1 Church encodings

Note that System F has no base types, but the type grammar is not empty because

of type variables.

We can extend System F with all the other types we have considered so far (in

fact, roughly speaking, we can think of typed functional programming languages

like OCaml as some combination of System F and PCF with isorecursive types.)

But it turns out that we do not need them. (An aside.)

bool := ∀𝛼.𝛼 → 𝛼 → 𝛼

true := Λ𝛼.𝜆𝑥 : 𝛼.𝜆𝑦 : 𝛼.𝑥

false := Λ𝛼.𝜆𝑥 : 𝛼.𝜆𝑦 : 𝛼.𝑦

if(𝑒1, 𝑒2, 𝑒3) : 𝜏 := 𝑒1@𝜏 𝑒2 𝑒3

nat := ∀𝛼.𝛼 → (𝛼 → 𝛼) → 𝛼

zero := Λ𝛼.𝜆𝑧 : 𝛼.𝜆𝑠 : 𝛼 → 𝛼.𝑧

suc(𝑒) := Λ𝛼.𝜆𝑧 : 𝛼.𝜆𝑠 : 𝛼 → 𝛼.𝑠 (𝑒@𝛼 𝑧 𝑠)
natrec(𝑒, 𝑒𝑧, 𝑒𝑠) : 𝜏 := 𝑒@𝜏 𝑒𝑧 𝑒𝑠

Exercise 11.5. Define not : bool → bool.

These encodings also work in the untyped 𝜆-calculus, but they don’t work in

STLC because we would have to fix the type that we map out into.

1.2 Free theorems

See Wadler [Wad89]. Parametric polymorphism is very strong:

• There are no closed terms of type ∀𝛼.𝛼 .

• The polymorphic identity function is the only term (up to observational

equivalence) of type ∀𝛼.𝛼 → 𝛼 .

• There is no closed term of the “fixpoint” type ∀𝛼.(𝛼 → 𝛼) → 𝛼 .
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• Any equal? : ∀𝛼.𝛼 → 𝛼 → bool must be constant.

• Any map : ∀𝛼.∀𝛽.(𝛼 → 𝛽) → list(𝛼) → list(𝛽) must satisfy the equa-

tions

map@𝜏@𝜏 ′ 𝑓

� 𝜆ℓ : list(𝜏) .map@𝜏@𝜏 ′ 𝑓 (map@𝜏@𝜏 (I@𝜏) ℓ)
� 𝜆ℓ : list(𝜏) .map@𝜏 ′@𝜏 ′ (I@𝜏 ′) (map@𝜏@𝜏 ′ 𝑓 ℓ)

2 Abstract types

An even more important application of type genericity arises when considering

abstract interfaces, e.g. in data structures.

An implementation of a queue (of numbers) must provide:

• a representation type 𝜏𝑟 for queues,

• a queue empty : 𝜏𝑟 ,

• a function enqueue : nat → 𝜏𝑟 → 𝜏𝑟 , and

• a function dequeue : 𝜏𝑟 → (unit + (nat × 𝜏𝑟 )).

There are various ways to implement queues, including the simple ListQueue
implementation in which 𝜏𝑟 = list(nat), and the more efficient BatchedQueues
in which 𝜏𝑟 = list(nat) × list(nat) [Oka99, Section 5.2].

There are many reasons why a program may wish to use a queue as part of

some other computation. We would like to arrange that such programs, which we

will call clients of the queue library, not only do not need to understand how queues

are implemented but in fact are prohibited from knowing the implementation.

To this end we will define an abstract interface (here, a type and three terms)

that all queue implementations will implement, and with respect to which all

clients will be implemented. Our type discipline will then enforce that clients

may not take the length of a queue even if we happen to link them against the

ListQueue implementation. (Indeed, that would prevent us from swapping the

ListQueues for BatchedQueues.)
Maintaining a strict separation of concerns between libraries and clients is

crucial to programming in the large. Object-oriented languages call this separa-

tion encapsulation; non-OO programming language theorists typically call it data
abstraction, and the type of queues an abstract data type.
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“Type structure is a syntactic discipline for enforcing levels of abstrac-

tion.” —John C. Reynolds

Extend System F with existential types:

The Δ ⊢ 𝜏 ty judgment:

. . .
Δ, 𝛼 ty ⊢ 𝜏 ty
Δ ⊢ ∃𝛼.𝜏 ty

The Δ; Γ ⊢ 𝑒 : 𝜏 judgment:

. . .
Δ ⊢ 𝜏𝑟 ty Δ, 𝛼 ty ⊢ 𝜏𝑖 ty Δ; Γ ⊢ 𝑒 : 𝜏𝑖 [𝜏𝑟/𝛼]

Δ; Γ ⊢ pack ⟨𝜏𝑟 , 𝑒⟩ as ∃𝛼.𝜏𝑖 : ∃𝛼.𝜏𝑖
∃-intro

Δ; Γ ⊢ 𝑒 : ∃𝛼.𝜏𝑖 Δ ⊢ 𝜏 ′ ty Δ, 𝛼 ty; Γ, 𝑥 : 𝜏𝑖 ⊢ 𝑒′ : 𝜏 ′

Δ; Γ ⊢ unpack ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒′ : 𝜏 ′
∃-elim

The 𝑣 val judgment:

. . .
pack ⟨𝜏𝑟 , 𝑒⟩ as ∃𝛼.𝜏𝑖 val

The 𝑒 ↦−→ 𝑒′ judgment:

𝑒 ↦−→ 𝑒′′

unpack ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒′ ↦−→ unpack ⟨𝛼, 𝑥⟩ = 𝑒′′ in 𝑒′

unpack ⟨𝛼, 𝑥⟩ = (pack ⟨𝜏𝑟 , 𝑒⟩ as ∃𝛼.𝜏𝑖) in 𝑒′ ↦−→ 𝑒′ [𝜏𝑟/𝛼] [𝑒/𝑥]

Remark 11.6. In fact it is possible to Church encode existential types, so everything

we say about System F with existential types actually applies directly to plain

System F. However, it will be much clearer for us to work with existential types

without going through an encoding.

Remark 11.7. The notation ∃ may seem somewhat odd at first, although it makes

some sense: to construct a term of type ∃𝛼.𝛼 × . . . there must “exist” some rep-

resentation type 𝜏𝑟 for which we can construct a term of type 𝜏𝑟 × . . . . In fact

this notation is chosen because the typing rules for abstract types extend the

Curry–Howard correspondence to existential quantification. In logic, to prove

(introduce) an ∃ statement, one must exhibit a particular witness along with a

proof of the statement for that witness. To use (eliminate) an ∃ statement, one can

assume that a generic witness satisfying the relevant property exists.
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Returning to the queue example,

QueueImpl := ∃𝛼.𝛼 × (nat → 𝛼 → 𝛼) × (𝛼 → unit + nat × 𝛼)
ListQueue := pack ⟨list(nat), (nil, [enq], [deq])⟩ as ∃𝛼.𝛼 × . . .

BatchedQueue := pack ⟨list(nat) × list(nat), . . . ⟩ as ∃𝛼.𝛼 × . . .

Client:

unpack ⟨𝜏𝑞, impl⟩ = ListQueue in . . . fst(impl) . . .

The type of the unpack has to not contain 𝜏𝑞 , and the client code . . . fst(impl) . . .
has to be parametrically polymorphic in 𝜏𝑞 . This is how we ensure data abstraction.

Note however that at runtime there is no longer any data abstraction.

2.1 Representation independence

What happens when we replace ListQueue with BatchedQueue?

unpack ⟨𝜏𝑞, impl⟩ = BatchedQueue in . . . fst(impl) . . .

This program is still well-typed, so it does not go wrong. But does it compute the

same thing as the previous program?

In general, two implementations of an interface might behave completely

differently. For example, the new queue’s dequeue function may always return

inl(()). In this case, we might imagine that despite having different runtime

representations of queues under the hood, ListQueues and BatchedQueues “have
the same extensional behavior,” and thus expect that the two programs should

compute the same result—even though they run different code!

One way to formalize the notion of “having the same extensional behavior” is

by exhibiting what is known as a bisimulation between the two queue implemen-

tations. Given two implementations

QueueImpl
1
:= pack ⟨𝜏1, (emp1, enq1, deq1)⟩ as ∃𝛼.𝛼 × . . .

QueueImpl
2
:= pack ⟨𝜏2, (emp2, enq2, deq2)⟩ as ∃𝛼.𝛼 × . . .

a queue bisimulation between QueueImpl
1
and QueueImpl

2
is a binary relation 𝑅

between closed terms of type 𝜏1 and closed terms of type 𝜏2, such that

• 𝑅(emp
1
, emp

2
) holds,

• for all 𝑛 : nat, 𝑞1 : 𝜏1, and 𝑞2 : 𝜏2 satisfying 𝑅(𝑞1, 𝑞2), 𝑅(enq1 𝑛 𝑞1, enq2 𝑛 𝑞2)
holds, and
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• for all 𝑞1 : 𝜏1 and 𝑞2 : 𝜏2 satisfying 𝑅(𝑞1, 𝑞2), either

– deq 𝑞1 � inl(()) and deq 𝑞2 � inl(()), or
– deq 𝑞1 � inr(𝑛1, 𝑞′1) and deq 𝑞2 � inr(𝑛2, 𝑞′2) where 𝑛1 � 𝑛2 and

𝑅(𝑞′
1
, 𝑞′

2
).

The representation independence theorem [Mit86] states that if we have a

queue bisimulation between QueueImpl
1
and QueueImpl

2
, then QueueImpl

1
and

QueueImpl
2
are observationally equivalent at type QueueImpl. That is, no pro-

gram’s result can be affected by swapping QueueImpl
1
for QueueImpl

2
. In particu-

lar, every client computes the same answers with respect to both implementations.

We emphasize that this theorem holds with no conditions whatsoever on the

client code: our type system guarantees that no program can tell apart bisimilar

terms of existential type.

In the next lecture we will use logical relations to prove the parametricity
theorem for System F, a powerful result from which we can obtain all of the free

theorems and representation independence theorems discussed in this lecture.
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