
Lecture Notes 12

Parametricity

Carlo Angiuli

B522: PL Foundations

April 21, 2025

these notes are even shorter on words...

In this lecture, we will prove, or at least sketch the proof of, the parametricity
theorem for System F (Theorem 12.21), which states that a certain binary logical

relation is reflexive. The key idea behind parametricity is that we can “instantiate”

type variables in System F not only with types but with a much larger class of type-

like relations. We can take advantage of this fact to derive various free theorems

and representation independence results.

This lecture will draw heavily upon ideas from the past three lectures on

termination, observational equivalence, and System F. The parametricity theorem

and its consequences are covered in Chapter 48 of Harper [Har16], although

our presentation is somewhat different and closer to Sections 4 and 5 of Lau

Skorstengaard’s notes from Amal Ahmed’s OPLSS lectures on logical relations.

1 Termination and candidats de réducibilité

The goal of the parametricity theorem is to characterize program equivalence in

System F, so we will once again extend our language with a type ans with two

values yes and no. As with the STLC, this lets us easily define a notion of program

outcome with two distinct possibilities.

The statement of the parametricity theorem is quite involved, so wewill start by

discussing the key idea in isolation. Let’s imagine trying to extend our termination

proof for STLC—which you may recall involved a unary logical relation called

hereditary termination—to System F. (Our goal is not in fact to prove termination,

although we will end up proving termination for ans en passant.)
Just as in the STLC, we cannot prove termination by a direct inductive argument

because the conjunction of 𝑓 ⇓ and 𝑒 ⇓ does not imply 𝑓 𝑒 ⇓. In order to apply

1

https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf
https://www.cs.uoregon.edu/research/summerschool/summer16/notes/AhmedLR.pdf


the technique of hereditary termination, we need to decide what it means for a

term to be hereditarily terminating at type ∀𝛼.𝜏 . A natural but flawed choice is

the following:

Invalid Definition (Hereditary termination). A closed term 𝑒 is hereditarily ter-
minating at type 𝜏 , or HT𝜏 (𝑒), when:

• If 𝜏 = ans, then 𝑒 ⇓ yes or 𝑒 ⇓ no.

• If 𝜏 = 𝜏1 → 𝜏2, then for all · ⊢ 𝑒1 : 𝜏1 such thatHT𝜏1 (𝑒1), we haveHT𝜏2 (𝑒 𝑒1).

• If 𝜏 = ∀𝛼.𝜏2, then for all · ⊢ 𝜏1 ty, HT𝜏2 [𝜏1/𝛼 ] (𝑒@𝜏1).

The issue with this definition is subtle but fatal: it is actually circular! We are

defining HT𝜏 by structural recursion on 𝜏 , but the definition of HT∀𝛼.𝜏2 makes

reference to everyHT𝜏2 [𝜏1/𝛼 ] which includes type expressions that are just as large

or even larger than ∀𝛼.𝜏2 itself! Compare this to the definition of HT𝜏1→𝜏2 , which

refers only to HT𝜏1 and HT𝜏2 .

To see concretely where this goes wrong, let us rephrase the definition as an

infinite conjunction: we define HT∀𝛼.𝛼 (𝑒) to hold if and only if HTans(𝑒@ans)
holds, and HTans→ans(𝑒@(ans → ans)) holds, and HT∀𝛼.𝛼 (𝑒@(∀𝛼.𝛼)) holds,
and HT∀𝛼.𝛼→𝛼 (𝑒@(∀𝛼.𝛼 → 𝛼)) holds, and. . .
Remark 12.1. The fact that∀𝛼.𝜏 quantifies over all types—including∀𝛼.𝜏—is known
as impredicative quantification/polymorphism. The distinction between impred-

icative and predicative quantification is a big topic, but for now we simply note:

• Impredicativity is an essential ingredient of our Church encodings. Defining

the function not : bool → bool, for example, requires instantiating the

type quantifier of a term of type bool = ∀𝛼.𝛼 → 𝛼 → 𝛼 at bool itself.

• On the other hand, the parametric nature of System F’s polymorphism is

quite separate from its impredicative nature; it is possible to study generics

and free theorems in the setting of what is called predicative System F.

2 Parametricity

Definition 12.2. A candidate relation or candidate is a triple (𝜏, 𝜏 ′, 𝑅) such that

𝜏, 𝜏 ′ are closed types, 𝑅 is a binary relation between closed terms of type 𝜏 and

closed terms of type 𝜏 ′, and 𝑅 is closed under head expansion in both arguments.

Definition 12.3. A relational environment 𝜌 for type context Δ, written 𝜌 : Δ,
assigns a candidate to each type variable in Δ. That is,

2



• · : · and

• (𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼) : (Δ, 𝛼 ty) if 𝜌 : Δ and (𝜏, 𝜏 ′, 𝑅) is a candidate.

Given 𝜌 : Δ we can extract closing type substitutions lhs(𝜌), rhs(𝜌)

lhs(·) = ·
lhs(𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼) = lhs(𝜌), 𝜏/𝛼

rhs(·) = ·
rhs(𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼) = rhs(𝜌), 𝜏 ′/𝛼

as well as look up a binary relation 𝜌 (𝛼) between 𝛼 [lhs(𝜌)] and 𝛼 [rhs(𝜌)] for any
type variable 𝛼 in Δ.

For 𝜌 : Δ and Δ ⊢ 𝜏 ty we define 𝑒 ∼ 𝑒′ : 𝜏 [𝜌] as a binary relation between

terms ·; · ⊢ 𝑒 : 𝜏 [lhs(𝜌)] and ·; · ⊢ 𝑒′ : 𝜏 [lhs(𝜌)] by induction on 𝜏 .

Definition 12.4. Given ·; · ⊢ 𝑒 : ans and ·; · ⊢ 𝑒′ : ans we say that 𝑒 and 𝑒′ are
Kleene equivalent, written 𝑒 ≃ 𝑒′, if either 𝑒 ⇓ yes and 𝑒′ ⇓ yes, or 𝑒 ⇓ no and

𝑒′ ⇓ no.

Invariant of following definition: dom(𝜌) ⊢ 𝜏 ty.

Definition 12.5 (Closed logical equivalence). We define 𝑒 ∼ 𝑒′ : 𝜏 [𝜌] by induction
on 𝜏 as follows:

• 𝑒 ∼ 𝑒′ : ans [𝜌] when 𝑒 ≃ 𝑒′.

• 𝑒 ∼ 𝑒′ : 𝜏1 → 𝜏2 [𝜌] for all 𝑒1 ∼ 𝑒′
1
: 𝜏1 [𝜌] we have 𝑒 𝑒1 ∼ 𝑒′ 𝑒′

1
: 𝜏2 [𝜌].

• 𝑒 ∼ 𝑒′ : ∀𝛼.𝜏2 [𝜌] when for all candidates (𝜏, 𝜏 ′, 𝑅) we have 𝑒@𝜏 ∼ 𝑒′@𝜏 ′ :
𝜏2 [𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼].

• 𝑒 ∼ 𝑒′ : ∃𝛼.𝜏2 [𝜌] when

𝑒 ⇓ pack ⟨𝜏, 𝑒2⟩ as ∃𝛼.𝜏2 and 𝑒′ ⇓ pack ⟨𝜏 ′, 𝑒′
2
⟩ as ∃𝛼.𝜏2

and there exists a candidate (𝜏, 𝜏 ′, 𝑅) such that 𝑒2 ∼ 𝑒′
2
: 𝜏2 [𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼].

• 𝑒 ∼ 𝑒′ : 𝛼 [𝜌] when 𝑒 𝜌 (𝛼) 𝑒′.

Lemma 12.6 (Head expansion). If 𝑑 ↦−→∗ 𝑒 and 𝑑 ′ ↦−→∗ 𝑒′ and 𝑒 ∼ 𝑒′ : 𝜏 [𝜌] then
𝑑 ∼ 𝑑 ′ : 𝜏 [𝜌].

Corollary 12.7. For 𝜌 : Δ and Δ ⊢ 𝜏 ty, logical equivalence is a candidate relation
(𝜏 [lhs(𝜌)], 𝜏 [rhs(𝜌)],− ∼ − : 𝜏 [𝜌]).

3



Lemma 12.8 (Compositionality). Suppose Δ, 𝛼 ty ⊢ 𝜏 ty, Δ ⊢ 𝜏1 ty, and 𝜌 : Δ. Then
for all ·; · ⊢ 𝑒 : 𝜏 [𝜏1/𝛼] [lhs(𝜌)] and ·; · ⊢ 𝑒′ : 𝜏 [𝜏1/𝛼] [rhs(𝜌)],

𝑒 ∼ 𝑒′ : 𝜏 [𝜏1/𝛼] [𝜌] ⇐⇒
𝑒 ∼ 𝑒′ : 𝜏 [𝜌, (𝜏1 [lhs(𝜌)], 𝜏1 [rhs(𝜌)],− ∼ − : 𝜏1 [𝜌])/𝛼]

Proof. By structural induction on 𝜏 ; note that Corollary 12.7 permits us to extend

𝜌 with logical equivalence at 𝜏1. □

For a typing context Γ well-formed in Δ and two closing substitutions 𝛾,𝛾 ′ we
define logical equivalence as pointwise (heterogeneous) logical equivalence.

Definition 12.9. We define 𝛾 ∼ 𝛾 ′ : Γ [𝜌] by induction on Γ as follows:

• · ∼ · : · [𝜌], and

• (𝛾, 𝑒/𝑥) ∼ (𝛾 ′, 𝑒′/𝑥) : (Γ, 𝑥 : 𝜏) [𝜌] if 𝛾 ∼ 𝛾 ′ : Γ [𝜌] and 𝑒 ∼ 𝑒′ : 𝜏 [𝜌].

Lemma 12.10 (Weakening). Suppose 𝜌 : Δ and (𝜏, 𝜏 ′, 𝑅) is a candidate. Then:

1. If Δ ⊢ 𝜏1 ty then for all ·; · ⊢ 𝑒 : 𝜏1 [lhs(𝜌)] and ·; · ⊢ 𝑒′ : 𝜏1 [rhs(𝜌)],

𝑒 ∼ 𝑒′ : 𝜏1 [𝜌] ⇐⇒ 𝑒 ∼ 𝑒′ : 𝜏1 [𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼]

2. If Γ is well-formed in Δ, then for all 𝛾 : Γ [lhs(𝜌)] and 𝛾 ′ : Γ [rhs(𝜌)],

𝛾 ∼ 𝛾 ′ : Γ [𝜌] ⇐⇒ 𝛾 ∼ 𝛾 ′ : Γ [𝜌, (𝜏, 𝜏 ′, 𝑅)/𝛼]

Definition 12.11 (Open logical equivalence). We say that two terms Δ; Γ ⊢ 𝑒 : 𝜏
and Δ; Γ ⊢ 𝑒′ : 𝜏 ′ are (open) logically equivalent, written Δ; Γ ⊢ 𝑒 ∼ 𝑒′ : 𝜏 , if for
all relational environments 𝜌 : Δ and all 𝛾 ∼ 𝛾 ′ : Γ [𝜌] we have 𝑒 [lhs(𝜌)] [𝛾] ∼
𝑒′ [rhs(𝜌)] [𝛾 ′] : 𝜏 [𝜌].

We can now prove what are called compatibility lemmas stating that each

typing rule respects open logical equivalence.

Lemma 12.12 (Compatibility for ans-intro1). Δ; Γ ⊢ yes ∼ yes : ans.

Lemma 12.13 (Compatibility for ans-intro2). Δ; Γ ⊢ no ∼ no : ans.

Lemma 12.14 (Compatibility for var). Δ; Γ, 𝑥 : 𝜏 ⊢ 𝑥 ∼ 𝑥 : 𝜏 .

Lemma 12.15 (Compatibility for →-intro). If Δ; Γ, 𝑥 : 𝜏1 ⊢ 𝑒2 ∼ 𝑒′
2
: 𝜏2 then

Δ; Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒2 ∼ 𝜆𝑥 : 𝜏1.𝑒
′
2
: 𝜏1 → 𝜏2.

4



Lemma 12.16 (Compatibility for →-elim). If Δ; Γ ⊢ 𝑓 ∼ 𝑓 ′ : 𝜏1 → 𝜏2 and
Δ; Γ ⊢ 𝑒1 ∼ 𝑒′

1
: 𝜏1 then Δ; Γ ⊢ 𝑓 𝑒1 ∼ 𝑓 ′ 𝑒′

1
: 𝜏2.

Lemma 12.17 (Compatibility for ∀-intro). If Δ, 𝛼 ty; Γ ⊢ 𝑒 ∼ 𝑒′ : 𝜏2 then Δ; Γ ⊢
Λ𝛼.𝑒 ∼ Λ𝛼.𝑒′ : ∀𝛼.𝜏2.

Proof. Uses Lemma 12.10. □

Lemma 12.18 (Compatibility for ∀-elim). If Δ; Γ ⊢ 𝑒 ∼ 𝑒′ : ∀𝛼.𝜏 and Δ ⊢ 𝜏1 ty
then Δ; Γ ⊢ 𝑒@𝜏1 ∼ 𝑒′@𝜏1 : 𝜏 [𝜏1/𝛼].

Proof. Uses Lemma 12.8. □

Lemma 12.19 (Compatibility for ∃-intro). If Δ ⊢ 𝜏𝑟 ty, Δ, 𝛼 ty ⊢ 𝜏𝑖 ty, and Δ; Γ ⊢
𝑒 ∼ 𝑒′ : 𝜏𝑖 [𝜏𝑟/𝛼], then Δ; Γ ⊢ pack ⟨𝜏𝑟 , 𝑒⟩ as ∃𝛼.𝜏𝑖 ∼ pack ⟨𝜏𝑟 , 𝑒′⟩ as ∃𝛼.𝜏𝑖 : ∃𝛼.𝜏𝑖 .

Proof. Uses Lemma 12.8. □

Lemma 12.20 (Compatibility for ∃-elim). If Δ; Γ ⊢ 𝑒 ∼ 𝑒′ : ∃𝛼.𝜏𝑖 , Δ ⊢ 𝜏2 ty,
and Δ, 𝛼 ty; Γ, 𝑥 : 𝜏𝑖 ⊢ 𝑒2 ∼ 𝑒′

2
: 𝜏2, then Δ; Γ ⊢ unpack ⟨𝛼, 𝑥⟩ = 𝑒 in 𝑒2 ∼

unpack ⟨𝛼, 𝑥⟩ = 𝑒′ in 𝑒′
2
: 𝜏2.

Proof. Uses Lemma 12.10. □

Theorem 12.21 (Parametricity). If Δ; Γ ⊢ 𝑒 : 𝜏 then Δ; Γ ⊢ 𝑒 ∼ 𝑒 : 𝜏 .

Proof. By structural induction on the typing judgment, straightforwardly applying

compatibility lemmas. □

Corollary 12.22 (Termination for ans). If ·; · ⊢ 𝑒 : ans then 𝑒 ⇓ yes or 𝑒 ⇓ no.

It is possible to prove that open logically equivalent terms are observation-

ally equivalent, although we skip this proof for now. Proof sketch: open

logical equivalence is a consistent congruence; by termination, observational

equivalence is a consistent congruence; observational equivalence is the

coarsest such.

3 Deriving free theorems

The primary consequence of Theorem 12.21 is that System F’s polymorphism is so

strong that we can instantiate terms of type ∀𝛼.𝜏 at arbitrary candidate relations.

Many free theorems follow directly from parametricity if we can cook up the right

candidate.

5



Theorem 12.23 (Polymorphic identity). If ·; · ⊢ 𝑓 : ∀𝛼.𝛼 → 𝛼 , then for all ·; · ⊢ 𝑒 : 𝜏

we have 𝑓@𝜏 𝑒 ↦−→∗ 𝑒 .

Proof. By Theorem 12.21 we have ·; · ⊢ 𝑓 ∼ 𝑓 : ∀𝛼.𝛼 → 𝛼 . Unfolding definitions,

this means that for all relational environments · : · and all closing substitutions

· ∼ · : · [·] we have 𝑓 [lhs(·)] [·] ∼ 𝑓 [rhs(·)] [·] : ∀𝛼.𝛼 → 𝛼 [·], i.e., we have the
closed logical equivalence 𝑓 ∼ 𝑓 : ∀𝛼.𝛼 → 𝛼 [·]. Expanding this definition, we

know that for all candidates (𝜏, 𝜏 ′, 𝑅) we have 𝑓@𝜏 ∼ 𝑓@𝜏 ′ : 𝛼 → 𝛼 [(𝜏, 𝜏 ′, 𝑅)/𝛼].
We will choose the candidate (𝜏, 𝜏, 𝑅) defined by

𝑑 𝑅 𝑑 ′ ⇐⇒ (𝑑 ↦−→∗ 𝑒 and 𝑑 ′ ↦−→∗ 𝑒)

It is easy to see that 𝑅 is closed under head expansion. Expanding the definition of

𝑓@𝜏 ∼ 𝑓@𝜏 : 𝛼 → 𝛼 [(𝜏, 𝜏, 𝑅)/𝛼], we know that for any 𝑒1 ∼ 𝑒′
1
: 𝛼 [(𝜏, 𝜏, 𝑅)/𝛼]

we have 𝑓@𝜏 𝑒1 ∼ 𝑓@𝜏 𝑒′
1
: 𝛼 [(𝜏, 𝜏, 𝑅)/𝛼], or rewriting once more, that for any

𝑒1 𝑅 𝑒′
1
we have (𝑓@𝜏 𝑒1) 𝑅 (𝑓@𝜏 𝑒′

1
).

We choose 𝑒1 = 𝑒′
1
= 𝑒 (which satisfies 𝑒 𝑅 𝑒), concluding (𝑓@𝜏 𝑒) 𝑅 (𝑓@𝜏 𝑒)

and hence 𝑓@𝜏 𝑒 ↦−→∗ 𝑒 as required. □

Theorem 12.24 (Polymorphic equality). If ·; · ⊢ 𝑓 : ∀𝛼.𝛼 → 𝛼 → ans, then for all
·; · ⊢ 𝑒1 : 𝜏 , ·; · ⊢ 𝑒2 : 𝜏 , ·; · ⊢ 𝑒′1 : 𝜏 ′, and ·; · ⊢ 𝑒′2 : 𝜏 ′ we have 𝑓@𝜏 𝑒1 𝑒2 ≃ 𝑓@𝜏 ′ 𝑒′

1
𝑒′
2
.

Proof. This proof proceeds similarly to the previous one, but we will choose to

instantiate 𝛼 at the candidate (𝜏, 𝜏 ′, 𝑅) where 𝑒 𝑅 𝑒′ always holds. (Again, this
relation is closed under head expansion.) Unfolding definitions more rapidly, by

Theorem 12.21 we have 𝑓 ∼ 𝑓 : ∀𝛼.𝛼 → 𝛼 → ans [·]. Instantiating at (𝜏, 𝜏 ′, 𝑅),

𝑓@𝜏 ∼ 𝑓@𝜏 ′ : 𝛼 → 𝛼 → ans [(𝜏, 𝜏 ′, 𝑅)/𝛼]

and thus

𝑒 𝑅 𝑒′ =⇒ 𝑓@𝜏 𝑒 ∼ 𝑓@𝜏 ′ 𝑒′ : 𝛼 → ans [(𝜏, 𝜏 ′, 𝑅)/𝛼]

Plugging in 𝑒1 𝑅 𝑒′
1
(which holds by the definition of 𝑅) we have

𝑓@𝜏 𝑒1 ∼ 𝑓@𝜏 ′ 𝑒′
1
: 𝛼 → ans [(𝜏, 𝜏 ′, 𝑅)/𝛼]

and thus

𝑒 𝑅 𝑒′ =⇒ 𝑓@𝜏 𝑒1 𝑒 ∼ 𝑓@𝜏 ′ 𝑒′
1
𝑒′ : ans [(𝜏, 𝜏 ′, 𝑅)/𝛼]

Finally, plugging in 𝑒2 𝑅 𝑒′
2
we have

𝑓@𝜏 𝑒1 𝑒2 ∼ 𝑓@𝜏 ′ 𝑒′
1
𝑒′
2
: ans [(𝜏, 𝜏 ′, 𝑅)/𝛼]

and thus 𝑓@𝜏 𝑒1 𝑒2 ≃ 𝑓@𝜏 ′ 𝑒′
1
𝑒′
2
as required. □

6



4 Deriving representation independence

Proving representation independence theorems is slightly more involved. Given

two pack terms of existential type and a bisimulation between them:

1. We use that bisimulation as the candidate relation to establish logical equiv-

alence of the two pack terms;

2. We use the parametricity theorem (Theorem 12.21) to see that all clients are

logically equivalent to themselves; and

3. We use the compatibility lemma for unpack (Lemma 12.20) to conclude

that unpacking two logically equivalent terms in the same client produces

logically equivalent results (and hence Kleene equivalent results, if the client

has type ans).

These ideas scale directly to arbitrarily complex interfaces, but for the sake

of this lecture we will pick a rather simple “toggling” interface with an abstract

type 𝛼 , a starting state 𝛼 , a toggling function 𝛼 → 𝛼 , and a “toBool” function
𝛼 → bool that converts the internal state to a boolean. We will implement two

togglers, one using booleans (impl
1
) and the other using natural numbers (impl

2
).
9

Theorem 12.25 (Representation independence). Let us write

Toggler := ∃𝛼.𝛼 × ((𝛼 → 𝛼) × (𝛼 → bool))
impl

1
, impl

2
: Toggler

impl
1
:= pack ⟨bool, (true, (not, 𝜆𝑥 : bool.𝑥))⟩ as Toggler

impl
2
:= pack ⟨nat, (zero, (𝜆𝑛 : nat.suc(𝑛), even?))⟩ as Toggler

For any 𝛼 ty;𝑥 : 𝛼 × ((𝛼 → 𝛼) × (𝛼 → bool)) ⊢ 𝑒 : ans, we have

(unpack ⟨𝛼, 𝑥⟩ = impl
1
in 𝑒) ≃ (unpack ⟨𝛼, 𝑥⟩ = impl

2
in 𝑒).

instantiate at the evident bisimulation

References

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.

doi: 10.1017/CBO9781316576892.

9
We can either extend System F with bool and nat or Church encode them.

7

https://doi.org/10.1017/CBO9781316576892

	12 Parametricity
	Termination and candidats de réducibilité
	Parametricity
	Deriving free theorems
	Deriving representation independence


