
Lecture Notes 1

Introduction

Carlo Angiuli

B522: PL Foundations

January 12, 2026

This course is an introduction to the theoretical foundations of programming
languages. In our first lecture, besides going through the basic mechanics of this

course (as outlined in the syllabus), I want to spend a significant amount of time

explaining what I mean by the theoretical foundations of programming languages,
by describing some basic problems that motivate the definitions and theorems that

we will encounter in this course.

Remark 1.1. This lecture includes some snippets of Racket code, but in general I

do not assume familiarity with any specific programming language(s).

1 Central Problem 1: Defining PLs

By this point in your CS career, you have used at least a few different programming

languages. In C311/B521, you’ve played around with a small Racket-like (or

perhaps Haskell-like) programming language, writing multiple interpreters for

it and adding features to it one by one. If you’ve taken P423/P523, you’ve even

written a compiler that takes Racket-like programs as input and turns them into

executables that you can run directly on your computer.

But what exactly is the Racket programming language? What is a Racket

program? And what is the meaning of a Racket program? What about Java, or

JavaScript? If you think about this question, you might say that a Racket program is

a text file that DrRacket agrees to run when you hit the Run button, and its meaning is

whatever DrRacket prints out. I find these answers rather intellectually unsatisfying,
and on further inspection, they actually raise more questions than they answer:

What version? (What about racket on the command line?) On whose

computer? (Do I need to understand my operating system and hard-

ware, too?) Does this mean it’s impossible for DrRacket to have bugs,

1



because its behavior is by definition correct? Wait, what language is

DrRacket written in, again?

Some programming languages, particularly older languages with multiple

implementations, have standards committees that get together and write a docu-

ment in English carefully explaining what the language means. The C23 standard

(ISO/IEC 9899:2024) is a 758-page PDF that costs 227 Swiss francs to download. In

theory this allows us to compare implementations to an agreed-upon reference,

but is such a standards document really better than defining a language in terms

of a freely-available implementation? (Maybe?)

C311/B521-style interpreters are more concise than the whole implementation

of Racket and more precise than a text document, but they still reduce the meaning

of the interpreted programming language to the meaning of a particular Racket

program and hence to the meaning of Racket itself. And this isn’t just an idle

worry: the parameter-passing convention implemented by the standard value-of
function actually relies on the parameter-passing convention used by Racket!

In this class Wewill learn how to view programming languages as mathematical

objects. Throughout the semester we will precisely define and analyze a series of

simple but representative programming languages, considering in each case the

abstract syntax of its programs, as well as those programs’ semantics.1

Abstract syntax is a mathematical representation of the structure of programs,

divorced from implementation details such as whitespace, Unicode, precedence,

and other practical issues related to inputting programs into a computer. (To

distinguish abstract syntax from “actual syntax,” we will refer to the latter as

concrete syntax.) We will define abstract syntax in terms of abstract syntax trees
(ASTs), abstract binding trees (ABTs), and inference rules.

We will study the semantics, or meaning, of programs primarily via a family

of techniques known as operational semantics, including what are called structural
operational semantics, context-sensitive reduction semantics, natural semantics, and
abstract machines. All of these abstractly capture some notion of “program execu-

tion.” We may also briefly discuss two other families of techniques for assigning

meaning to programs: denotational semantics, which capture the meaning of pro-

grams via mathematical functions, and axiomatic semantics, which capture the

meaning of programs via logical formulas. In each case we strive for a composi-
tional understanding of program syntax and semantics, in which the meaning of a

program is determined by the meanings of its constituent parts.

1
Harper [Har16] refers to these as statics and dynamics respectively.

2

https://www.iso.org/standard/82075.html


2 Central Problem 2: Going right and going wrong

Once we have a precise mathematical definition of a programming language, we

can start asking precise mathematical questions about it. One of the first questions

we might ask when trying to get a handle on a programming language is, “What

are all the possible results that programs can produce?”

In Racket, 2 is both a valid program and a valid program result, or value. (+ 1
1) is a program but not a value: it is not fully simplified.

2 + is both a program and

a value in Racket, but in many other languages it is neither. In some languages, 2
is not even a program (e.g., because programs must contain a main function) but it

is still a value.

But 2 and "hello" and + are all “normal” values that a program might return

when it succeeds. What about programs where something goes wrong?

... contract violation ...

... segmentation fault (core dumped) ...

... java.lang.ArrayIndexOutOfBoundsException ...

Just as different programming languages have very different values, they also

have very different errors. Some errors are recoverable; others are not. Some

errors, like dereferencing a null pointer, are unrecoverable in some languages

and recoverable in others. Some errors are not even possible in certain languages:

running (+ 1 "hello") produces a contract violation in Racket, but Typed

Racket rejects it as a type mismatch before even attempting to run it.

In this class One of the major themes in programming language theory is to

understand exactly what program behaviors, both “good” and “bad,” are possible

in a given programming language. Throughout the semester, we will define a

series of languages with increasingly complex type systems. In each case, we will

analyze their syntax and semantics in tandem to mathematically prove that certain

behaviors (e.g., attempting to add non-numbers) are ruled out by the type system.

We will learn how to perform rule induction on the syntax and semantics of

programming languages to establish type safety, a central concept in programming

language theory often summarized as “Well-typed programs cannot ‘go wrong.’”

The standard technique for establishing type safety decomposes it into several

smaller lemmas known as progress, preservation, and the canonical forms lemma.

2
Not to be confused, of course, with '(+ 1 1), which is both a program and a value.

3



Later on in the semester, we will learn a much more powerful proof technique

known as the technique of logical relations, which will allow us to precisely char-

acterize the program behaviors that are possible at every given type. For example,

we will consider several typed 𝜆-calculi for which logical relations enable us to

prove that all programs terminate.

3 Central Problem 3: Program fragment equivalence

The third problem is the one I find most interesting, in part because it requires the

deepest understanding of our language yet: “When are two pieces of code equal?”

Every time we refactor or optimize a program, we have some intuitive notion

of which maneuvers are meaning-preserving: for example, we might simplify (if
x true false) to x. A disciplined programmer might even have a test suite to

help catch regressions as they refactor. But how can we be sure that our program

has not changed meaning? How many tests are enough? And what about compiler

implementers who dream up a new optimization to apply to every program?

We say that two pieces of code are observationally equivalent if replacing one

with the other never changes the result of a surrounding program. Observational

equivalence is a very strong property and is highly sensitive to details of the

programming language in question. To pick an extreme example, Python code can

access the names of functions as strings via .__name__, so even two differently-

named functions with identical definitions are inequivalent in Python.
3

What about Racket? Is (* 0 𝑒) always equivalent to 0? (Think about it for a

moment.) No, because the former produces an error when 𝑒 = "hello". But even
if we rule out errors the answer is still “no”—think about it again for a moment—in

cases where 𝑒 is an infinite loop, or prints to the console, or set!s something.

Suppose for example that 𝑒 = (begin (set! x 2) 0). Then

(let ([x 1]) (+ (* 0 𝑒) x)) = 2

(let ([x 1]) (+ 0 x)) = 1

Exercise 1.2. Is (𝑓 𝑒 𝑒) always equivalent to (let ([x 𝑒]) (𝑓 x x))?

Remark 1.3. Disproving observational equivalence is as simple as finding a single

surrounding program that distinguishes two pieces of code, but proving observa-

tional equivalence naïvely requires checking every possible surrounding program,

an impossible task.

3
In fairness, most “real” programming languages have at least one mechanism—reflection, timers,

etc.—capable of distinguishing virtually all non-identical programs.

4



Type systems often have a profound impact on observational equivalence: by

restricting what surrounding programs are valid, they limit the number of ways

in which two pieces of code can be distinguished. For example, because Typed

Racket rejects (* 0 "hello") as a type mismatch, it has fewer situations than
Racket in which (* 0 𝑒) and 0 behave differently.

The most important example of this phenomenon is that of type-based mech-

anisms for abstraction. There are many ways to concretely represent ordered

collections of numbers, including linked lists, trees, ArrayLists, etc. These collec-
tions and their operations are clearly observationally inequivalent—one is a list and

the other isn’t—but if these implementation details are hidden behind an abstract

type of “Lists” or “Sequences,” we can in fact prove that no two programs can

distinguish these data representations through the List interface. This property
is known as representation independence.

“Type structure is a syntactic discipline for enforcing levels of abstrac-

tion.” —John C. Reynolds

In this class We will precisely define observational equivalence (or contextual
equivalence) of program fragments for a number of programming languages. Using

logical relations, we will prove that observational equivalence coincides with a

more tractable, type-directed relation known as logical equivalence, and use this to

establish some interesting observational equivalences.

As an important application of this technique, we will study the core cal-

culus known as System F whose polymorphic types and existential types encode
abstract interfaces. Using logical relations, we will prove a parametricity theorem
characterizing observational equivalence in System F, and derive some important

consequences known as free theorems and representation independence.

4 Course objectives

By the end of the course, students will be able to:

• formally define a variety of programming languages by their statics (type

systems) and dynamics (operational semantics),

• prove theorems relating a language’s statics and dynamics,

• formally define and reason about equivalence of program fragments, and

• appreciate the importance of compositionality and abstraction in the design

of programming languages.

5



My goal in this course is to provide students with a basic foundation in the

theory of programming languages. For some of you this may be your only foray

into this area; others may pursue programming languages research at Indiana Uni-

versity or elsewhere. In either case, I hope that this class deepens your appreciation

of the subtleties of programming language design.

4.1 Regarding actual programming languages

In this lecture we have mentioned some “real” programming languages
4
as moti-

vation. However, this course will not focus on such languages but instead on what

are called core calculi: idealized programming languages designed to exhibit a small

number of features rather than to serve as a realistic general-purpose language.

In the long run, researchers aim to understand existing “real” languages by

developing core calculi embodying their most important features. Conversely,

understanding core calculi and their properties can help us ensure that the next

generation of “real” languages are well-behaved in a variety of precise senses.

“Programming language semanticists should be the obstetricians of

programming languages, not their coroners.” —John C. Reynolds

In particular, it is not the goal of this course to taxonomize or evaluate “real”

programming languages, although I (and, I daresay, my colleagues) believe that

the theoretical properties we will study in this class make for well-behaved pro-

gramming languages in practice. That said, there are certainly many aspects of

programming languages that are very important in practice but quite orthogo-

nal to this class, including good editor support, large libraries, friendly online

communities, well-named keywords, fast compilers, etc.

References

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.

doi: 10.1017/CBO9781316576892.

4
That is, a general-purpose language that one might reasonably choose for practical tasks.

6

https://doi.org/10.1017/CBO9781316576892

	1 Introduction
	Central Problem 1: Defining PLs
	Central Problem 2: Going right and going wrong
	Central Problem 3: Program fragment equivalence
	Course objectives
	Regarding actual programming languages



