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In this lecture, we use the concepts introduced in the previous lecture to state

and prove our first interesting theorem about a programming language: type safety
(or type soundness) for a first-order language with booleans and numbers.

Type safety for first-order languages is covered in Chapters 4–6 of Harper

[Har16], but we will consider a different language taken from Chapter 8 of Pierce

[Pie02] because we’re covering topics in a different order from the textbook.

Remark 3.1. Today we will encounter several instances of inconsistent or unsettled
terminology; I will flag these as they come up.

1 A slightly more interesting language

Our running example in the previous lecture was a simple programming language

of boolean expressions. This lecture we’ll consider a language with both booleans

and natural numbers.

Definition 3.2. The judgment 𝑒 tm is defined by the following BNF grammar:

Terms 𝑒 ::= true | false | if(𝑒, 𝑒, 𝑒)
| zero | suc(𝑒) | pred(𝑒) | zero?(𝑒)

We will define the meaning of this language shortly, but some helpful remarks:

We’ve removed not to shorten our proofs; it’s definable in terms of if. pred is

short for “predecessor,” as in the opposite of “successor”; it subtracts one. zero? is

a boolean test of whether its (numerical) input is the number zero.
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2 Operational semantics (dynamics)

At the end of the previous lecture, we defined the meaning of programs using a

binary evaluation judgment 𝑒 ⇓ 𝑒′ stating that the expression 𝑒 evaluates to the

expression 𝑒′. We will do two things differently this time:

• Rather than defining a binary judgment for the “full” evaluation of a term,

we will define a binary judgment for taking a single step of computation.

• We will define a unary judgment expressing that a term is finished computing.

The evaluation judgment 𝑒 ⇓ 𝑒′ from previous lecture is sometimes called

natural semantics or big-step operational semantics; it corresponds to defining an

interpreter by structural recursion.

Today’s judgment 𝑒 ↦−→ 𝑒′ is often called structural operational semantics or
small-step operational semantics (for obvious reasons). Small-step judgments are

used more commonly than evaluation judgments; there’s nothing wrong with

evaluation judgments, but small-step judgments are often easier to reason about,

especially when proving type safety.

Remark 3.3. In both approaches, note that the intermediate and final stages of

a computation are drawn from the same exact collection of terms as our input

language. This is a convenient simplifying assumption when it works, but it

doesn’t always. For example, your interpreters in C311/B521 evaluated lambdas to
“closures,” which were not part of the input language.

Definition 3.4 (Values). For 𝑒 tm, we define the judgment 𝑒 val (“𝑒 is a value”) by
the following inference rules. We notate values using the metavariable 𝑣 .

true val false val zero val

𝑣 val

suc(𝑣) val

Values are programs that are “finished computing.” Note that, like our set of

programs, the set of values includes some “nonsense,” like suc(true).

Definition 3.5 (Small-step operational semantics). For 𝑒 tm, we define the judg-

ment 𝑒 ↦−→ 𝑒′ (“𝑒 steps to 𝑒′”) by the inference rules in Figure 3.1.

The reader may notice that there are two distinct “kinds of rules” in small-step

operational semantics. Rules like

if(true, 𝑒2, 𝑒3) ↦−→ 𝑒2
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if(true, 𝑒2, 𝑒3) ↦−→ 𝑒2 if(false, 𝑒2, 𝑒3) ↦−→ 𝑒3

𝑒1 ↦−→ 𝑒′
1

if(𝑒1, 𝑒2, 𝑒3) ↦−→ if(𝑒′
1
, 𝑒2, 𝑒3)

𝑒 ↦−→ 𝑒′

suc(𝑒) ↦−→ suc(𝑒′)

pred(zero) ↦−→ zero
★

𝑣 val

pred(suc(𝑣)) ↦−→ 𝑣

𝑒 ↦−→ 𝑒′

pred(𝑒) ↦−→ pred(𝑒′)

zero?(zero) ↦−→ true

𝑣 val

zero?(suc(𝑣)) ↦−→ false

𝑒 ↦−→ 𝑒′

zero?(𝑒) ↦−→ zero?(𝑒′)

Figure 3.1: Definition of ↦−→.

are sometimes called principal reductions; they define how the primitive operations

behave on values. On the other hand, congruence reduction rules like

𝑒1 ↦−→ 𝑒′
1

if(𝑒1, 𝑒2, 𝑒3) ↦−→ if(𝑒′
1
, 𝑒2, 𝑒3)

define the language’s evaluation order ; in this language, if fully evaluates its first

argument but not its second or third arguments. We say that the first argument of

if is the principal argument.

Remark 3.6. There seems to be no standard terminology for principal reductions—

see this February 2021 Twitter thread between Derek Dreyer, myself, and others—

but this term is well-motivated by proof theory and was previously used by Benton

et al. [Ben+93]. As for the congruence reductions, terminology varies; Harper

[Har16] calls them search transitions and Pierce [Pie02] calls them congruence rules.

Remark 3.7. There are also two kinds of term operators: the ones that “make data”

and the ones that “consume data.” true, false, zero, and suc make data, and are

the values of our language. if, pred, and zero? consume data; each of them has a

congruence reduction rule and several principal reductions.

Remark 3.8. Figure 3.1 contains one possibly dubious rule: pred(zero) ↦−→ zero.
We will revisit this rule later.
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The following are “sanity check” lemmas that we can prove by rule induction.

Lemma 3.9. If 𝑣 val then 𝑣 tm.

Lemma 3.10. If 𝑒 tm and 𝑒 ↦−→ 𝑒′ then 𝑒′ tm.

Lemma 3.11 (Determinacy). If 𝑒 ↦−→ 𝑒′ and 𝑒 ↦−→ 𝑒′′ then 𝑒′ = 𝑒′′.

Lemma 3.12 (Finality of values). If 𝑣 val then there is no 𝑒′ such that 𝑣 ↦−→ 𝑒′.

We write 𝑒 ̸↦−→ to mean that there exists no 𝑒′ such that 𝑒 ↦−→ 𝑒′.

Remark 3.13. You might be tempted to also state the following lemma:

“If 𝑒 tm then either 𝑒 ↦−→ 𝑒′ or 𝑒 val.”

Unfortunately, that is false: terms such as zero?(true) and if(zero, 𝑒2, 𝑒3) are
neither values nor take a step, because their principal arguments are somehow

“the wrong kind of thing.” Such terms are called stuck.

Definition 3.14. For 𝑒 tm, we define the judgment 𝑒 ↦−→∗ 𝑒′ (“𝑒 takes zero or

more steps to 𝑒′”) by the following inference rules:

𝑒 ↦−→∗ 𝑒

𝑒 ↦−→ 𝑒′ 𝑒′ ↦−→∗ 𝑒′′

𝑒 ↦−→∗ 𝑒′′

↦−→∗
is called the reflexive transitive closure of ↦−→.

Lemma 3.15 (Uniqueness of values). If 𝑒 ↦−→∗ 𝑣 and 𝑒 ↦−→∗ 𝑣 ′ where 𝑣 val and
𝑣 ′ val, then 𝑣 = 𝑣 ′.

We typically don’t write derivation trees for ↦−→ or ↦−→∗
because they are

quite awkwardly shaped. Instead, we typically write a sequence of single-step

reductions like so:

suc(if(zero?(pred(suc(zero))), suc(zero), zero))
↦−→ suc(if(zero?(zero), suc(zero), zero))
↦−→ suc(if(true, suc(zero), zero))
↦−→ suc(suc(zero))

The underlines are optional but indicate the subterm that is being simplified in the

following step. A term that matches the left-hand side of a principal reduction is

called a reducible expression, or redex for short.

Remark 3.16. The plural of redex is redexes, not redices.
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3 Type system (statics): 2 Types 2 Furious

Because our language has two different kinds of data in it, it is possible for eval-

uation to get stuck if an operator that expects a number is given a boolean, or

vice versa. We consider programs that eventually get stuck to be erroneous or

nonsense, and would like to exclude them from consideration before we even try to
evaluate them. We do this by syntactically characterizing which programs produce

numerical values, and which programs produce boolean values.

Types 𝜏 ::= bool | num

Definition 3.17 (Type system). For 𝑒 tm and 𝜏 ty, we define the judgment 𝑒 : 𝜏

(“𝑒 has type 𝜏”) by the following inference rules:

true : bool false : bool zero : num

𝑒 : num

suc(𝑒) : num

𝑒 : num

pred(𝑒) : num
𝑒 : num

zero?(𝑒) : bool
𝑒1 : bool 𝑒2 : 𝜏 𝑒3 : 𝜏

if(𝑒1, 𝑒2, 𝑒3) : 𝜏

Exercise 3.18. Show there is no 𝜏 ty such that zero?(true) : 𝜏 .

Lemma 3.19 (Uniqueness of types). If 𝑒 : 𝜏 and 𝑒 : 𝜏 ′ then 𝜏 = 𝜏 ′.

Note that our type system does not refer to our operational semantics. Rather,

it is a purely static analysis of the syntactic structure of terms: 𝑒 : num never gets
stuck, and its only possible values are natural numbers; 𝑒 : bool never gets stuck,

and its only possible values are true and false. In the next section, we will show

that our analysis is sound (Theorem 3.29), but our analysis (like essentially all type

systems) is not complete. That is, it is a conservative analysis that “misses” some

programs that do actually compute boolean or numerical values.

Remark 3.20. Terms of type bool are not “booleans” and terms of type num are not
“numbers”; they are programs that we expect to compute booleans or numbers.

Exercise 3.21. Show that if(true, true, zero) does not have type bool (in fact it

has no type at all), but it steps to true.

4 Type safety = progress + preservation

The type safety theorem, also known as type soundness, expresses that our type

system and operational semantics agree with one another. There are several ways
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to state this result, but all of them have the upshot that programs of type bool
compute boolean results, and programs of type num compute natural number

results. Harper [Har16] formulates type safety as the following theorem:

Theorem 3.22 (Type safety à la Harper [Har16]).

1. If 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then 𝑒′ : 𝜏 .

2. If 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′.

The first clause, preservation (or subject reduction), says that ↦−→ preserves

typing. The second clause, progress, says that well-typed terms are never “stuck”:

they either are values or can take a step.

There are two very famous slogans associated to this theorem. The first, popu-

larized by Harper [Pie02, p. 95], is quite self-explanatory: “type safety is progress +
preservation.” The second, due to Milner [Mil78], is “well-typed expressions do not
go wrong.” Indeed, Theorem 3.22 implies that every well-typed program has either

successfully finished evaluating, or steps to a well-typed program (at which point

we are either done, or we take another successful step, ad infinitum).

Remark 3.23. Progress may sound like it alone implies that “well-typed programs

don’t get stuck,” but it really says that well-typed programs aren’t immediately
stuck. We need preservation to conclude that well-typed programs never become

stuck during evaluation, immediately or otherwise.

However, the approach of using progress and preservation to establish type

safety is decades newer than the concept of type safety itself; thus it is reasonable

to argue that type safety “is” the idea that well-typed programs do not go wrong,

demoting the status of progress + preservation to a pair of convenient lemmas.

Theorem 3.24 (Type soundness à la Wright and Felleisen [WF94]). If 𝑒 : 𝜏 and
𝑒 ↦−→∗ 𝑒′ ̸↦−→, then 𝑒′ : 𝜏 and 𝑒′ val.

The formulation in Theorem 3.24 is taken directly from Wright and Felleisen

[WF94] who introduced the technique of progress and preservation in 1994, thereby

allowing subsequent generations of PL researchers to avoid learning any denota-

tional semantics. Progress and preservation were later famously used in the proof

of type safety for Featherweight Java with generics [IPW01], and are now among

the most famed and trusted tools in the PL researcher’s toolbox.

Returning to the main story, we prove type safety in three steps: canonical

forms (Theorem 3.25), progress (Theorem 3.26), and preservation (Theorem 3.27).

Lemma 3.25 (Canonical forms). Suppose 𝑣 : 𝜏 and 𝑣 val. Then:
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1. If 𝜏 = bool, then 𝑣 = true or 𝑣 = false.

2. If 𝜏 = num, then 𝑣 nat where the nat judgment is defined as:

zero nat

𝑣 nat

suc(𝑣) nat

Proof. We use rule induction on 𝑣 : 𝜏 to prove 𝑃 (𝑣, 𝜏) = “If 𝑣 val then (1) if 𝜏 = bool
then 𝑣 = true or 𝑣 = false, and (2) if 𝜏 = num then 𝑣 nat.” (The following proof is

written out in extra detail, hopefully for clarity.)

• Case

true : bool
:

The antecedent true val holds. For (1), the antecedent 𝜏 = bool holds, and
𝑣 = true. For (2), the antecedent 𝜏 = nat is false so the statement holds

vacuously.

• Case

false : bool
:

Analogous to previous case.

• Case

zero : num
:

zero val holds. (1) is vacuous; for (2), 𝜏 = num holds, and zero nat.

• Case

𝑒 : num

suc(𝑒) : num
:

Suppose suc(𝑒) val; then by inversion, we have 𝑒 val. (1) is vacuous because
𝜏 ≠ bool; for (2), 𝜏 = num holds, and we must show suc(𝑒) nat holds. By
our inductive hypothesis 𝑃 (𝑒, num), if 𝑒 val and num = num then 𝑒 nat. Thus
𝑒 nat and so suc(𝑒) nat as required.

• Remaining cases (pred, zero?, if): The antecedent 𝑣 val is false by inversion,
so the statement holds vacuously. □

Lemma 3.26 (Progress). If 𝑒 : 𝜏 then either 𝑒 val or 𝑒 ↦−→ 𝑒′ for some 𝑒′.

Proof. By rule induction on 𝑒 : 𝜏 .

• Case

true : bool
:

True by true val.
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• Case

false : bool
:

True by false val.

• Case

zero : num
:

True by zero val.

• Case

𝑒 : num

suc(𝑒) : num
:

We must show that suc(𝑒) val or suc(𝑒) ↦−→ 𝑒′. By our inductive hypothesis,
either 𝑒 val or 𝑒 ↦−→ 𝑒′′. In the former case, suc(𝑒) val; in the latter case,

suc(𝑒) ↦−→ suc(𝑒′′).

• Case

𝑒 : num

pred(𝑒) : num
:

This is never a value, so we will have to show pred(𝑒) ↦−→ 𝑒′. By our

inductive hypothesis, either 𝑒 val or 𝑒 ↦−→ 𝑒′′. In the latter case, pred(𝑒) ↦−→
pred(𝑒′′). In the former case, by Theorem 3.25 we have 𝑒 nat, and complete

the proof by inversion on 𝑒 nat. If 𝑒 = zero, then pred(zero) ↦−→ zero.
Otherwise, if 𝑒 = suc(𝑣) where 𝑣 nat, then pred(suc(𝑣)) ↦−→ 𝑣 .

• Case

𝑒 : num

zero?(𝑒) : bool
:

Similar to previous case.

• Case

𝑒1 : bool 𝑒2 : 𝜏 𝑒3 : 𝜏

if(𝑒1, 𝑒2, 𝑒3) : 𝜏
:

This is never a value, so we will have to show if(𝑒1, 𝑒2, 𝑒3) ↦−→ 𝑒′. By our

inductive hypothesis on 𝑒1, either 𝑒1 val or 𝑒1 ↦−→ 𝑒′
1
. In the latter case,

if(𝑒1, 𝑒2, 𝑒3) ↦−→ if(𝑒′
1
, 𝑒2, 𝑒3). In the former case, by Theorem 3.25 we have

𝑒1 = true or 𝑒1 = false. If 𝑒1 = true then if(𝑒1, 𝑒2, 𝑒3) ↦−→ 𝑒2; if 𝑒1 = false
then if(𝑒1, 𝑒2, 𝑒3) ↦−→ 𝑒3. □

Lemma 3.27 (Preservation). If 𝑒 : 𝜏 and 𝑒 ↦−→ 𝑒′ then 𝑒′ : 𝜏 .

Proof. By rule induction on 𝑒 ↦−→ 𝑒′. We focus on a few representative cases.

• Case

if(true, 𝑒2, 𝑒3) ↦−→ 𝑒2
:

By inversion on the typing judgment, if if(true, 𝑒2, 𝑒3) : 𝜏 then 𝑒2 : 𝜏 and

𝑒3 : 𝜏 . Thus in particular 𝑒2 : 𝜏 as required.
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• Case

𝑒1 ↦−→ 𝑒′
1

if(𝑒1, 𝑒2, 𝑒3) ↦−→ if(𝑒′
1
, 𝑒2, 𝑒3)

:

By inversion on the typing judgment, if if(𝑒1, 𝑒2, 𝑒3) : 𝜏 then 𝑒1 : bool, 𝑒2 : 𝜏 ,
and 𝑒3 : 𝜏 . By our inductive hypothesis, 𝑒′

1
: bool; the result follows by the

typing rule for if.

• Case

𝑣 val

pred(suc(𝑣)) ↦−→ 𝑣
:

By two inversions on typing, if pred(suc(𝑣)) : num then 𝑣 : num. □

Exercise 3.28. Prove the remaining cases of Theorem 3.27.

It follows that if a well-typed term terminates, it terminates in a value of the

same type. In other words, programs of type bool compute booleans and programs

of type num compute natural numbers.

Corollary 3.29 (Type soundness). If 𝑒 : 𝜏 and 𝑒 ↦−→∗ 𝑒′ ̸↦−→, then:

• If 𝜏 = bool, then 𝑒′ = true or 𝑒′ = false.

• If 𝜏 = num, then 𝑒′ nat.

Proof. By rule induction on 𝑒 ↦−→∗ 𝑒′.

• Case

𝑒 ↦−→∗ 𝑒
:

By Theorem 3.26, either 𝑒 val or 𝑒 ↦−→ 𝑒′, but the latter is impossible by our

hypothesis 𝑒 ̸↦−→. The result follows by Theorem 3.25.

• Case

𝑒 ↦−→ 𝑒′ 𝑒′ ↦−→∗ 𝑒′′

𝑒 ↦−→∗ 𝑒′′
:

By Theorem 3.27, 𝑒′ : 𝜏 . The result follows by our inductive hypothesis. □

Remark 3.30. Type safety tells us that well-typed terms do not get stuck, but

it allows for the possibility that a well-typed term will get into an infinite loop

without ever reaching a value. For this particular language it is easy to establish

that all programs (even ill-typed ones!) terminate—every ↦−→ rule shrinks the size

of the term—but in more interesting languages we will need to resort to more

sophisticated techniques to prove termination.
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5 Evaluation contexts

Add more words in this section.

We can rephrase the operational semantics in Figure 3.1 to group all the congruence

reductions into a single rule. Also called contextual dynamics, context-sensitive
reduction semantics, and reduction semantics.

Evaluation contexts E ::= ◦ | if(E, 𝑒, 𝑒) | suc(E) | pred(E) | zero?(E)

Definition 3.31. For any evaluation context E and 𝑒 tm, we define the instantiation

of E with 𝑒 , written E{𝑒}, by structural recursion:

◦{𝑒} = 𝑒

if(E, 𝑒2, 𝑒3){𝑒} = if(E{𝑒}, 𝑒2, 𝑒3)
suc(E){𝑒} = suc(E{𝑒})
pred(E){𝑒} = pred(E{𝑒})

zero?(E){𝑒} = zero?(E{𝑒})

Isolate the principal reductions 𝑒 ↦−→𝑝 𝑒′ and define ↦−→ in one rule.

𝑒 ↦−→𝑝 𝑒′

E{𝑒} ↦−→ E{𝑒′} if(true, 𝑒2, 𝑒3) ↦−→𝑝 𝑒2 if(false, 𝑒2, 𝑒3) ↦−→𝑝 𝑒3

pred(zero) ↦−→𝑝 zero
★

𝑣 val

pred(suc(𝑣)) ↦−→𝑝 𝑣

zero?(zero) ↦−→𝑝 true

𝑣 val

zero?(suc(𝑣)) ↦−→𝑝 false

6 Well-typed programs can go wrong

“Type errors” like zero?(true) are a major source of going wrong in a program-

ming language, but sometimes things can go wrong even with the guardrails of a

type system. Consider division by zero: there’s no number for division by zero

to step to, but statically ruling it out would require a type system that can detect

which numerical expressions cannot be zero at runtime.

This may suggest that type safety does not hold for languages with division,

but in fact we can refine the statement of type safety to account for this. The idea
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is to add a second kind of “outcome” to our language: in addition to evaluating to a

value, a program may evaluate to a well-defined error state. This is distinct from a

program failing to have a next state. We can think of the well-defined error states

as checked errors, or errors that a user is forewarned might occur, and stuck terms

as encountering unchecked errors, ones that indicate a gap in the language itself.

To see an example of this in action, let’s introduce a new judgment 𝑒 err
indicating that 𝑒 evaluates no further because it has encountered the “subtraction

from zero” error. We can adjust the contextual dynamics of the previous section

by deleting the principal reduction labeled ★ and replacing it with two new rules:

pred(zero) ↦−→𝑝 zero
★ ⇝

pred(zero) err
𝑒 err

E{𝑒} err

The first rule says that pred(zero) raises the “subtraction from zero” error, and

the second rule propagates this error through evaluation contexts.

The statements and proofs of the canonical forms and preservation lemmas

remain unchanged, but we must adjust progress to account for this error:

Lemma 3.32 (Progress). If 𝑒 : 𝜏 then either 𝑒 val or 𝑒 err or 𝑒 ↦−→ 𝑒′ for some 𝑒′.

Type safety then still tells us that programs never get stuck: the possible out-

comes are now that a program terminates successfully with a value, or terminates

unsuccessfully with the “subtraction from zero” error, or gets into an infinite loop.
5

We will study this further in the next problem set.

References

[Ben+93] Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland.

“Linear 𝜆-calculus and categorical models revisited”. In: Computer
Science Logic. Ed. by E. Börger, G. Jäger, H. Kleine Büning, S. Martini,

and M. M. Richter. Berlin, Heidelberg: Springer Berlin Heidelberg,

1993, pp. 61–84. isbn: 978-3-540-47890-4.

[Har16] Robert Harper. Practical Foundations for Programming Languages. Sec-
ond Edition. Cambridge University Press, 2016. isbn: 9781107150300.

doi: 10.1017/CBO9781316576892.

[IPW01] Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. “Feather-

weight Java: a minimal core calculus for Java and GJ”. In:ACMTransac-
tions on Programming Languages and Systems 23.3 (May 2001), pp. 396–

450. issn: 0164-0925. doi: 10.1145/503502.503505.
5
Again, there are no infinite loops in this language, although type safety does not tell us this.

11

https://doi.org/10.1017/CBO9781316576892
https://doi.org/10.1145/503502.503505


[Mil78] Robin Milner. “A theory of type polymorphism in programming”. In:

Journal of Computer and System Sciences 17.3 (1978), pp. 348–375. issn:
0022-0000. doi: 10.1016/0022-0000(78)90014-4.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press,

2002. isbn: 0-262-16209-1.

[WF94] A.K. Wright and M. Felleisen. “A Syntactic Approach to Type Sound-

ness”. In: Information and Computation 115.1 (Nov. 1994), pp. 38–94.

issn: 0890-5401. doi: 10.1006/inco.1994.1093.

12

https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1006/inco.1994.1093

	3 Type Safety
	A slightly more interesting language
	Operational semantics (dynamics)
	Type system (statics): 2 Types 2 Furious
	Type safety = progress + preservation
	Evaluation contexts
	Well-typed programs *can* go wrong


